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Preface

Voice over IP (VoIP) in particular and Voice over Packet (VoP) in general have been advocated and studied 
since the mid 1970s. It was the advent of DSP technology for voice compression in the late 1980s and early 
1990s that gave these services the impetus they needed to enter the mainstream. Commercial-grade tech-
nologies and services started to appear in the 1996-7 timeframe and books on the topic started to appear in 
1998, with Mr. Minoli’s co-authored Delivering Voice over IP book (Wiley, April 1, 1998) being the fi rst 
text on the market on this topic. A lot has transpired since then. Now, enterprise networks, cellular carriers, 
voice-over-cable carriers, “triple-play” carriers, “pure-play VoIP carriers,” and even traditional voice carriers 
are all moving rather aggressively to a VoIP paradigm.

A fair degree of commercial success can be acknowledged as of 2006. Small-to-medium size enterprises are 
using the technology to save money on trunking costs. Large-size enterprises are using the technology for 
mobility support and related functional enhancements, including “presence-related functions” and unifi ed 
messaging. Large-size companies are also using this technology for Contact Center support, particularly for 
hosted ACD-capabilities and for virtual Contact Centers (where agents are distributed throughout al large 
geographic area.)  Carriers are deploying these services to generate new revenues, stem the movement away 
from traditional TDM services, and enter new markets (e.g., “triple-play” applications.)

However, there are two fundamental problems that currently pose a signifi cant risk to the scalability of VoIP 
to a large-population base along with guaranteed “industrial-grade” service levels. The fi rst problem is lack 
of de-facto intrinsic QoS in many of the IP networks deployed around the globe (both at the carrier level and 
at the enterprise level.)  The second problem relates to end-to-end integrity of the signaling and bearer path 
for VoIP, specifi cally the fact that VoIP packets have a “diffi cult” time being carrier across fi rewalls, not only 
because of protocol considerations, but, at the practical level, because of the Network Address Translation 
(NAT) issues. Additionally, one can also cite overall security concerns as another potentially problematic 
issue.

What were the “bragging rights” of the large national voice carriers across the world (particularly under the 
auspices of the ITU-T) were the assertions that, in true fact, “…(with TDM) any one in the world could call 
anyone else in the world, any time, any where, and be able to support a good-quality telephonic conversa-
tion…” That is an elusive, currently-unachievable goal for the VoIP industry…

This book is a vade mecum on IPv6 opportunities for carrier-class VoIP. Specifi cally, it looks at the use of 
IPv6 to support a next-generation, carrier-class VoIP environments, which we call VoIPv6. IPv6 offers the 
potential of achieving the scalability, reacheability, end-to-end interworking, QoS, and commercial-grade 
robustness for VoIP that are mandatory mileposts of the technology if indeed it is to replace the TDM infra-
structure around the world, in the true sense of the word sens the marketing hype… Specifi cally, IPv6 can be 
employed to addresses the QoS and NAT issues. While some technologists may argue that “there is nothing 
one can do about QoS with IPv6 that one cannot do with IPv4,” or “NATs will not disappear just because 
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IPv6 has a larger native address space because there are a number of reasons for isolating a private address 
domain behind a fi rewall that are unrelated with the scarcity of IPv4 addresses,” such arguments exhibit 
some naiveté: one can cite literally dozens of examples where ostensibly the claim that “there is nothing that 
technology n + 1 can do that technology n can’t do” has been made in the past 40 years, yet, the technology 
marches on inexorably to new approaches and new modalities. Specifi cally, in this context, the question we 
believe is operative is not if “IPv4 will be replaced,” but simply “when it will be replaced”. The position 
of this textbook is not that there are certain things that cannot be done one way or another with IPv4, just 
that, in our opinion, the most optimal way to build next-generation VoIP systems that have the scope, reach, 
ubiquity, reliability, and robustness of the current commercial PSTN is with IPv6 – other approaches may be 
possible, but may not be as optimal.

This book is the fi rst book of its kind to address this issue as a macro-level scalability requirement. The book 
basically is comprised of two sections: an opening section (Chapters 1-5) that looks at VoIP applications and 
motivations, and the second part (Chapters 6-8) focuses on the IPv6 itself.

After an introduction in Chapter 1, we provide a quick tutorial in Chapter 2 on VoIP and in Chapter 3 on 
SIP and signaling. Chapter 4 continues that basic discussion by examining the area of “presence,” which rep-
resents a value-added set of VoIP-based capabilities. Chapter 5 discusses the issues associated with current 
VoIP implementations, as highlighted above. 

Chapter 6 provides a basic introduction to IPv6. Chapter 7 discusses the delivery of voice-over-packet in an 
IPv6 environment. Chapter 8 provides some basic discussion of the transition issues including interworking 
between IPv6 and IPv4. Europe and Asia are currently leading in the planning of IPv6 networks. 

In general, telecom areas of (industry) growth in the short-to-medium term (say four-to-seven years) include 
VoIP, wireless, security, IPv6, Grid Computing, Ubiquitous Computing, and nanotechnology (nanoelectron-
ics, nanophotonics, and quantum computing). This book covers several of these themes.

This book should prove useful to VoIP equipment vendors, VoIP service providers (e.g., cellular carri-
ers, voice-over-cable carriers, “triple-play” carriers, “pure-play VoIP carriers,” and even traditional voice 
carriers), enterprise customers, researchers, planners, and educators. Portions of this book are based on 
particularly-selected RFC material: given the emerging nature of the topic and the status of the 3G service 
proposals, this contextual assembly of the information should be useful and should read as logically well 
organized. We explicitly credit the developers of these RFCs as the “intellectual” trust behind the mate-
rial. This derivative assembly of material comments on or otherwise explains selected RFC material, and 
intend to assist in their implementation/understanding/dissemination. The synthesis provided in this text is 
much more than an anthology of relevant specs or documents – but recognizing that the IETF has created 
an extremely valuable and very lucid exposition on these exact issues, we fi nd that said materials provide 
an excellent foundation for a study of VoIPv6; hence, their synthesis herewith. The book in not principally 
designed to be a pure pedagogical introduction to VoIP itself, however, a fair amount of basic material 
in included to make the book relatively self-contained; for basic introductions to VoIP there are several 
textbooks, including, but not limited to, this author’s market-fi rst books listed in the Reference section; the 
principal focus here is on the IPv6 perspective.

There is an extensive body of research literature on the topic of SIP, IPv6, NAT, and related issues (as noted 
in the appendix of Chapter 1). This text is intended only as a fi rst-read on the topic. The bibliography in 
Chapter 1 is an excellent source of useful additional information.

Preface

xii
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1

C H A P T E R  1
Introduction

1.1  Overview
 Voice over Internet Protocol (VoIP), in particular, and  Voice over Packet (VoP), in general, have been 
advocated and studied since the late-1970s. The reality is, however, that until the late 1990s, voice- and 
video-over-packet networks have been mostly used for pre-stored kinds of media solutions, namely, for one-
way download of sound fi les or video fi les that were played in nonreal time at the user’s personal computer, 
or at most, for a simplex transmission path with a relatively large intrinsic delay, such as Internet radio. At 
this juncture, however, there is a discernible movement afoot in the industry to affect the transition to a con-
verged, fully multimedia-enabled, real-time packet-based communication infrastructure for both enterprise 
networks and for carriers’ network environments in support of commercial-grade real-time voice, commer-
cial-grade video, and commercial-grade  Video-On-Demand (VOD) services. These converged networks will 
allow voice, video, data, and images to be delivered anywhere in the world, at any time, and with any kind of 
user’s communication device and network access service [MIN199801], [MIN199802], [MIN200201], [MIN200202].

It was the advent of  Digital Signal Processing (DSP) technology for voice and video compression in the 
late 1980s and early 1990s that gave multimedia-over-packet services the impetus they needed to enter 
the mainstream. Commercial-grade VoIP technologies and services started to appear in the early 2000s in 
First-Generation (1G) networks. A lot has transpired since then; enterprise networks, cellular carriers, Voice-
over-Cable (VoCable) carriers, “triple-play” carriers, “pure-play VoIP carriers,” and even traditional voice 
carriers are all moving rather aggressively to a VoIP paradigm. This is a Second-Generation (2G) technol-
ogy. Next generation third-wave (3G) technology is just 2−3 years away.

A fair degree of commercial success can be acknowledged with regard to 2G VoIP networks as of press time. 
Small-to-medium sized enterprises are using the technology to save money on trunking costs. Large-size 
enterprises are using the technology for mobility support and related functional enhancements, includ-
ing “presence-related functions” and unifi ed messaging. Roaming from Ethernet-based phones to cellular 
service is beginning to be supported. Large-sized companies are also using this technology for contact center 
support, particularly for hosted  Automatic Call Distribution (ACD)-capabilities and for virtual contact cen-
ters (where agents are distributed throughout a large geographic area). Carriers are deploying these services 
to generate new revenues, replace (substitute) the revenue movement away from traditional   Time Division 
Multiplexing ( TDM) services and, enter new markets (for example,  “triple-play” applications.)

Despite recent successes, there are two fundamental problems that currently pose a signifi cant risk to the 
unconstrained scalability of VoIP to a large-population base along with guaranteed “industrial-grade” service 
levels. The fi rst problem is lack of de facto intrinsic  Quality of Service (QoS) in many of the IP networks 
deployed around the globe (both at the carrier level and at the enterprise level). The second problem relates 
to end-to-end integrity of the signaling and bearer path for VoIP, specifi cally the fact that VoIP packets have 
a “diffi cult” time being carried across fi rewalls, not only because of protocol considerations, but, at the 
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practical level, because of  Network Address Translation (NAT) issues. Additionally, one can also cite overall 
security concerns, such as eavesdropping and hacking as another potentially problematic issue. Next-genera-
tion 3G VoIP networks are now on the drawing board to address these issues, specifi cally, scalability and 
commercial-grade reliability; these networks are based on IPv6.

The “bragging rights” of the large international voice carriers across the world (particularly under the aus-
pices of the International Telecommunication Union [ITU]) were the assertions that, in true fact, “…(with 
TDM) anyone in the world could call anyone else in the world, any time, any where, and be able to support 
a good-quality telephonic conversation …” Frankly, this is an elusive, currently-unachievable goal for the 
VoIP industry. IPv6 offers the potential of achieving the scalability, reachability, end-to-end interworking, 
QoS, and commercial-grade robustness levels for VoIP that are mandatory mileposts of the technology if it is 
indeed to eventually replace the  TDM infrastructure around the world, in the true sense of the word sans the 
marketing hype. Specifi cally, IPv6 deals with the QoS and NAT issues.

This is the fi rst book of its kind to address the issue of macro-level scalability requirements and IPv6’s op-
portunity in this context. 

IPv6 is considered to be the next-generation Internet protocol [HUI199701], [HAG200201], [MUR200501], 
[SOL200401], [ITO200401], [MIL199701], [MIL200001], [GRA200001], [DAV200201], [LOS200301], [LEE200501], 
[GON199801], [DEM200301], [GOS200301], and [WEG199901]. The current version of IPv4 has been in use for 
almost thirty years and exhibits (some) challenges in supporting emerging demands for address space 
cardinality, high-density mobility, and strong security—this is particularly true in developing domestic 
and defense department applications utilizing peer-to-peer networking. IPv6 is an improved version of the 
Internet protocol that is designed to coexist with  IPv4 and eventually provide better overall internetworking 
capabilities than IPv4 [IPV200401]. Proponents see applications in a whole gamut of environments, including 
VoIP, third-generation Wi-Fi, and security [ISL200501].

IPv6 was initially developed in the early 1990s because of the anticipated need for more addresses based on 
forecasted Internet growth; that is, cell phone deployment, PDA introduction, smart appliances, and billions 
of new users in developing countries (e.g., in China, India, and so on.). New technologies such as VoIP, 
always-on Internet access (for example, DSL and cable), Ethernet to the home, and evolving ubiquitous 
computing applications are driving and/or will be driving this need even more in the next few years. 

NAT-based accommodation is but a short-term solution against this anticipated growth phenomenon and a 
better solution is needed.  Basic Network Address Translation (Basic NAT) is a method in which IP ad-
dresses are mapped from one group to another, transparent to end users. Specifi cally, private “nonregistered” 
addresses are mapped to a small set (as small as 1) of legal addresses. This, however, impacts the general 
addressability, accessibility, even “individuality” of the device.  Network Address Port Translation (NAPT) 
is a method by which many network addresses and their Transmission Control Protocol/User Datagram Pro-
tocol (TCP/UDP) ports are translated into a single network address and its TCP/UDP ports. Together, these 
two operations, referred to as traditional NAT, provide a mechanism utilized in IPv4 to connect a realm with 
private addresses to an external realm with globally-unique registered addresses [SRI200101].

There is a recognition that NAT techniques makes the Internet, the applications, and even the devices more 
complex, which in turn implies a cost overhead [IPV200501]. The expectation is that IPv6 can make every IP 
device less expensive, more powerful, and even consume less power; the power issue is not only important 
for environmental reasons, but also improves operability (e.g., longer battery in portable devices, such as cell 
phones) [IPV200501]. The market has associated IPv6 with “lots of addressing,” but planners do not yet real-
ize that it does a lot of other things too [MAL200501]. IPv6 can improve the Internet or a fi rm’s intranet, with 
benefi ts such as:
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• expanded  addressing capabilities;
•  serverless  autoconfi guration (plug-and-play) and reconfi guration;
• more effi cient and robust mobility mechanisms;
•  end-to-end security, with built-in, strong IP-layer encryption and authentication;
• streamlined header format and fl ow identifi cation;
• enhanced support for multicast and QoS and,
•  extensibility: improved support for options/extensions.

Corporations and government agencies will be able to achieve a number of improvements with IPv6. While 
the basic functions of Internet protocols are to move information across networks, IPv6 has more capabili-
ties built into its foundation than  IPv4. A key capability—and the reason research began to replace IPv4—is 
the signifi cant increase in address space. Consumers look for “ plug-and-play” simplicity, collaboration (e.g., 
distributed games), and mobility. IPv6 is a natural convergence protocol for tomorrow’s IP-centric world, as 
depicted in Figure 1.1 [ISL200501].
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Premium Content
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IP Interactive
Media

GRID Computing 

Secure VPN 

VoIP Services IP Mobility Services 

IP Collaboration 

Online Training 

Online Education 

Courtesy: IPv6 Forum 

Desirable Important 

Time 

IPv6 Relevance 

Essential 

Personal Telephony Personal Media 

Long Medium Short 

C
on

su
m

er
 

E
nt

er
pr

is
e 

C
ar

rie
r 

Wi-Fi PBX Wi-Fi Virtual Radio

Figure 1.1: IPv6 applicability, including VoIP and personal telephony.

For example, in an IPv6 environment, all equipment can have a “legal”/ globally-unique IP address, so that equip-
ment can be uniquely tracked; while today, all Ethernet devices have a unique  Media Access Control (MAC) 
address. Not all devices are Ethernet, hence, the challenge in this respect. Today’s inventory management cannot 
be achieved with IP; it follows that someone has to manually walk around at various times during the inventory 
cycle to ensure each desktop computer is where it is supposed to be. With IPv6, one can use the network to verify 
that such equipment is there. Even non-IT equipment in the fi eld can also be tracked, by having an  IP address 
permanently assigned to it.
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More network security is embedded in IPv6 than in IPv4. Also, it has extensive automatic confi guration 
( autoconfi guration) mechanisms; with IPv4 one needs to add mechanisms such as Dynamic Host Confi gura-
tion Protocol (DHCP) and others to make it happen, while IPv6 reduces the IT burden making confi guration 
essentially  plug-and-play.

In general, telecom areas of (industry) growth in the short-to-medium term (say four to seven years) include 
VoIP, wireless, security, IPv6, grid computing, ubiquitous computing, and nanotechnology (nanoelectronics, 
nanophotonics, and quantum computing). This book covers several of these themes.

IPv6 is now gaining momentum globally, with a lot of interest and activity in Europe and Asia. There is also 
incipient traction in the U.S., and it’s only a matter of time before a transition will need to occur worldwide. For 
example, the  U.S. Dept. of Defense (DoD) announced in 2003 that from October 1, 2003, all new developments 
and procurements had to be IPv6-capable. The DoD’s goal is to complete the transition to IPv6 for all intra- and 
internetworking across the agency by 2008 [IPV200501]. In 2005, the  U.S. Government Accountability Offi ce 
(GAO) recommended that all agencies become proactive in planning a coherent transition to IPv6 [MAL200501]. 

VoIP systems, and even more so mobile devices, require end-to-end interworking between entities such as 
VoIP network elements/gatekeepers/gateways,  Session Initiation Protocol (SIP) servers/proxies/registrars, 
IEEE 802.11 wired and wireless LANs, protocol fi rewalls, stateful fi rewalls, application gateways/session 
border controllers, (IP security protocol )  IPSec appliances, Virtual Private Network (VPN) nodes, DHCP 
servers, DNS servers/proxies, desktop systems and desktop (as well as back-end) applications. Some of 
these elements do not work as well as one would like in an  IPv4 environment. Naturally, these observa-
tions apply to pure IP VoIP networks, with end-to-end IP delivery across the enterprise network or across 
a carrier’s (or carriers’) network(s). A number of institutions are currently deploying a hybrid approach 
(particularly where the  Private Branch Exchanges (PBX) has been fully depreciated but is still working), 
which consists of an IP upgrade to serve the “station side,” but a traditional  TDM switching fabric and TDM 
trunking on the “network side.” Only a fully IP-based system can deliver all of the mobility, productivity, 
and enhancements that are promised by VoIP. Hence, a transition to the pure IP environment is only a matter 
of time; in turn, this will raise the NAT, fi rewall, and scalability issues we are describing. 

Some proponents see aggressive inroads for  VoIP (while others see a more modest path to penetration.) For 
example, U.K. market research fi rm Analysys claimed in 2005 that traditional residential telephone service 
“will whither away in Western Europe in the next four years”; specifi cally, mobile service and VoIP will ac-
count for 60% of all  residential voice service expenditures by 2010 according to the fi rm [MOB200501]. “The 
mass market for voice services in Western Europe is being transformed by the substitution of mobile and 
new VoIP services for traditional fi xed-voice services, and we expect that in fi ve years 45% of voice minutes 
will be made from a mobile or VoIP connection, compared to 28% in 2004.” According to Analysys, overall, 
a quarter of households in Western Europe will switch away from so-called Plain Old Telephony Services 
(POTS) by 2010 to a combination of mobile and VoIP service, the report concluded. About 45% of all voice 
minutes by residential customers will be made from one of those two newer types of connections, according 
to the research fi rm. By 2010, VoIP over broadband connections could account for 9.6% of all voice minutes. 
Other observers are more conservative in their estimates. Because VoIP over broadband is inexpensive, the 
percentage of users’ incomes spent on voice service will decrease in coming years. All of this points to the 
need for VoIP scalability and IPv6 as a subtending technology to support such scalability.

1.2 Introductory Overview of  IPv6
IP was designed in the 1970s with the purpose of connecting computers that were in separate geographic 
locations. Computers in a campus were connected to each other by means of local networks, but these local 
networks were separated into stand-alone islands. Internet, as a name to designate the protocol, and later the 
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name of the worldwide information network, simply means “ internetwork”—that is, a connection between 
networks. In the beginning, the protocol had an only military use, but computers from universities, users, 
and enterprises were soon added. Internet as a worldwide information network is the result of the practical 
application of the IP protocol, that is, the result of the interconnection of a large set of information networks 
existing in the world [IPV200501]. The current generation of IP protocol is IPv4. Starting in the early 1990s, 
developers realized that the communication needs of the twenty-fi rst century needed a protocol with some 
new features and capabilities, while at the same time retaining the useful features of the existing protocol. 

While link-level communication does not generally require a  node identifi er (address) because the remote 
device is intrinsically identifi ed with the link’s remote sink, communication over a group of links (a net-
work) does require unique node identifi ers (addresses). The IP address is an identifi er that is assigned to each 
device connected to an IP network. In this setup, different elements taking part in the network (servers, rout-
ers, user computers, gateways, etc.) communicate among them using their IP address as the identifi er. The 
issue relates to the question if a device can have its own dedicated, permanent, globally-unique, “registered” 
IP address, or if it needs to operate only via the use of a temporary nonglobally-unique IP address. Version 
4 of the IP protocol addresses consist of four octets. For ease of human conversation, IP protocol addresses 
are represented as numbers separated by periods, for example: 166.74.110.83, where the decimal number is 
a shorthand (and corresponds to) the binary code described by the byte in question (an 8-bit number takes a 
value from 0–255 range). Since the IPv4 address has 32 bits there are nominally 232 different IP addresses 
(approximately 4 billions nodes, if all combinations are used).

IPv6 is the Internet’s next-generation protocol, which was at fi rst called   IPng, Internet Next Generation. IPv6 
is the upgrade of the data networking protocol in which the Internet at large, and nearly all enterprise networks 
are based on. The Internet Engineering Task Force (IETF) developed the basic specifi cations during the 1990s 
to eventually support a migration to a new environment. IPv6 is defi ned in RFC 2460, “Internet Protocol, Ver-
sion 6 (IPv6) Specifi cation,” S. Deering, R. Hinden (December 1998), which obsoletes RFC 1883 (the “version 
5” reference was employed for another use: an experimental real-time streaming protocol. To avoid any confu-
sion, it was decided not to make use of this nomenclature). The IPv6 protocol apparatus is described by the 
100+ IETF RFCs identifi ed in Appendix B (some have been obsoleted and/or replaced.)

1.2.1  IPv6 Benefi ts
 IPv4 has demonstrated, by means of its long life, to be a fl exible and powerful mechanism. However, IPv4 
is starting to exhibit limitations, not only with reference to the need for raw increase of the  IP address space, 
driven, for example, by new populations of users in large countries like China and India, along with new 
technologies with “always connected devices” (xDSL, cable, PDAs, UMTS mobile telephones, etc), but also 
in reference of VoIP both in terms of the NAT issue as well as the QoS issue.

IPv6 tackles these problems by creating a new IP address format, so that the number of IP addresses will not 
exhaust for several decades or longer, even though an entire new crop of devices are expected to connect to 
the Internet, under the thrust of the coming wave of Ubiquitous Computing (also known as Pervasive Com-
puting). IPv6 also adds improvements in areas such as routing and network  autoconfi guration. New devices 
that connect to the Internet will be “ plug-and-play” devices. With IPv6, one is not required to confi gure 
dynamic nonpublished local IP addresses, the gateway, the subnetwork mask, or any other parameters. The 
equipment is plugged into the network and it obtains all requisite confi guration data [IPV200501].

The advantages of IPv6 can be summarized as follows:

 Scalability: IPv6 has 128-bit addresses versus 32-bit  IPv4 addresses. With IPv4, the theoretical num-
ber of available IP addresses is 232 ~1010. IPv6 offers a 2128 space. Hence, the number of available 
unique node addressees are 2128 ~1040.
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 Security: IPv6 includes security in its specifi cations such as information encryption and authentication 
of the source of the communication.

Real-time applications: To provide better support for real-time traffi c (e.g., VoIP, IPTV), IPv6 includes 
in its specifi cations “labeled fl ows.” By means of this mechanism, routers can recognize the 
end-to-end fl ow to which transmitted packets belong to. This is similar to the service offered by 
Multiprotocol Label Switching (MPLS), but it is intrinsic with the IP mechanism rather than an 
add-on. Also, it preceded this MPLS feature by a number of yeas.

 Plug-and-play: IPv6 includes in its standard a “ plug-and-play” mechanism that facilitates the connec-
tion of equipment to the network. The requisite confi guration is automatically made (as is the case 
today with Ethernet).

 Mobility: IPv6 includes more effi cient and enhanced mobility mechanisms.

Optimized protocol: IPv6 embodies IPv4 best practices, but removes unused or obsolete  IPv4 character-
istics; this results in a better-optimized Internet protocol.

Addressing and routing: IPv6 improves the addressing and routing hierarchy.

 Extensibility: IPv6 has been designed to be extensible and offers optimized support for new options and 
extensions.

1.2.2  Network Address Translation Issues in IPv4
As noted, IPv4 theoretically allows up to 232 addresses, based on a four-octet address space. Legal, glob-
ally-unique addresses are assigned by the Internet Assigned Numbers Authority (IANA). IP addresses are 
addresses of computer nodes at layer 3. Each device on a network (whether the Internet or an intranet) must 
have a unique address; in IPv4 the layer 3 address is a 32-bit (4-byte) binary address used to identify a host’s 
network ID as well as the host’s own ID. As noted, it is represented by the nomenclature a.b.c.d (each of 
these being from 1 to 255–0 has a special meaning); for example, 167.168.169.170, or 232.233.229.209, or 
200.100.200.100, etc. The network portion can contain either a network ID or a network ID and a subnet ID. 

The    IP address can be from an offi cially-assigned range, or from an internal (but not globally-unique) block. 
Internal intranet addresses may be in other ranges, for example, in the 10.0.0.0 or 192.0.0.0 range. In the 
latter case, a NAT function is employed to map the internal addresses to an external legally-assigned number 
when the private-to-public network boundary is crossed by a packet. This, however, imposes a number of 
limitations, particularly since the number of registered external addresses available to a company is almost 
invariably much smaller (as small as 1) than the number of internal devices requiring an address.

The 32-bit address can be represented as AdrType|netID|hosted. Every network and every host or device 
has a unique network address, by defi nition, although such address may not be globally-unique. Figure 1.2 
depicts the traditional address classes.

 Address Class A. Class A uses the fi rst bit of the 32-bit space (bit 0) to identify it as a Class A address; 
this bit is set to 0. Bits 1 to 7 represent the network ID, and bits 8 through 31 identify the PC, ter-
minal device, VoIP handset, or host/server on the network. This address space supports 27 – 2 = 126 
networks and approximately 16 million devices (224) on each network. By convention, the use of 
an “all 1s” or “all 0s” address for both the Network ID and the Host ID is prohibited (which is the 
reason for subtracting the 2 above.)

 Address Class B. Class B uses the fi rst two bits (bit 0 and bit 1) of the 32-bit space to identify it as a 
Class B address; these bits are set to 10. Bits 2 to 15 represent the network ID, and bits 16 through 
31 identify the PC, terminal device, VoIP handset, or host/server on the network. This address space 
supports 214 – 2 = 16,382 networks and 212 – 2 = 65,134 devices on each network. 
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Figure 1.2: Traditional address classes for  IP address.

 Address Class C. Class C uses the fi rst 3 bits (bit 0, bit 1, and bit 2) of the 32-bit space to identify it 
as a Class C address; these bits are set to 110. Bits 3 to 23 represent the network ID, and bits 24 
through 31 identify the PC, terminal device, VoIP handset, or host/server on the network. This ad-
dress space supports about 2 million networks (221 – 2) and 28 – 2 = 254 devices on each network. 

 Address Class D. This class is used for broadcasting: multiple devices (all devices on the network) 
receive the same packet. Class D uses the fi rst 4 bits (bit 0, bit 1, bit 2, and bit 3) of the 32-bit space 
to identify it as a Class D address; these bits are set to 1110. 

  Classless Interdomain Routing (CIDR) is yet another mechanism that was developed to help alleviate the 
problem of exhaustion of IP addresses and growth of routing tables. CIDR is described in RFC 1518, RFC 
1519, and RFC 2050. The concept behind CIDR is that blocks of multiple addresses (for example, blocks 
of Class C addresses) can be combined, or aggregated, to create a larger classless set of IP addresses, with 
more hosts allowed. Blocks of Class C network numbers are allocated to each network service provider; 
organizations using the network service provider for Internet connectivity are allocated subsets of the service 
provider’s address space as required. These multiple Class C addresses can then be summarized in routing 
tables, resulting in fewer route advertisements. CIDR mechanism can be applied to blocks of Class A, B, and 
C addresses [TEA200401]. All of this assumes, however, that the institution in question already has an assigned 
set of “legal” IP addresses; it does not address the issue of how to get additional “legal” (registered) glob-
ally-unique IP addresses.

During the 1980s, a great quantity of  “legal” addresses were allocated to fi rms and organizations without 
stringent control; as a result, many organizations have more addresses that they actually need, giving rise 
to the present dearth of available “registerable” Layer 3 addresses. Furthermore, not all IP addresses can be 
used due to the fragmentation described above. One approach to the issue would be a renumbering and a 
reallocation of the  IPv4 addressing space. However, this is not as simple as it seems since it requires world-
wide coordination efforts. Moreover, it would still be limited for the human population and the quantity of 
devices that will be connected to Internet in the medium-term future [IPV200501]. 
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At this juncture, and as a temporary and pragmatic approach to alleviating the dearth of addresses, NAT 
mechanisms are employed by organizations and even home users. This mechanism consists of using only 
a legal  IPv4 address for an entire network to access to Internet. The many internal devices an organization 
may have are assigned IP addresses from a specifi cally-designated range of Class A or Class C addresses 
that are locally-unique, but are duplicatively used and reused within various organizations. Figure 1.3 depicts 
the NAT arrangement diagrammatically.

PC 
PDA 

192.168.1.2 192.168.1.3 192.168.1.4 192.168.1.5 

INTERNET 

155.55.115.18 

Router (with NAT) 
(DHCP active) 

Ethernet Switch 

192.168.1.6 
192.168.1.1 

Figure 1.3: Diagrammatic view of  NAT arrangement.

Many protocols cannot travel through a NAT device; hence, NAT implies that a number of applications (for 
example, with VoIP) cannot be used effectively in all instances. As a consequence, these applications can 
only be used within the scope of the intranet. Examples include the following [IPV200501]: 

•   Multimedia applications such as videoconference applications, VoIP through the Internet, or video-
on-demand/IPTV do not work smoothly through NAT devices. Multimedia applications make use 
of   Real-Time Transport Protocol (RTP) and   Real-Time Control Protocol (RTCP); in turn, these use 
UDP with dynamic allocation of ports (NAT does not directly support this environment). 

•   Kerberos1 authentication needs the source address; unfortunately, the source address in the IP 
header is often modifi ed by NAT devices. 

•   IPSec is used extensively for data authentication, integrity, and confi dentiality. However, when NAT 
is used,  IPSec operation is impacted, since NAT changes the address in the IP header. 

•   Multicast, although is possible in theory, requires complex confi guration in a NAT environment; 
hence, in practice it is not utilized as often as should be the case. 

NAT disappears with IPv6.

1 A network security package developed at the Massachusetts Institute of Technology that depends on passwords and symmetric 
 cryptography (e.g., Data Encryption Standards (DES)) to implement ticket-based, peer entity authentication service and access 
 control service distributed in a client-server network environment. 
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1.2.3   IPv6 Address Space
As we have already noted, IPv6 provides more IP addresses than does IPv4. The format of IPv6 addressing 
is described in RFC 2373. We have indicated that an IPv6 address consists of 128 bits, rather than 32 bits of 
the IPv4 addresses. The number of bits correlates to the address space, is as follows in Table 1.1:

Table 1.1: IPv6 and IPv4 address space.

IP Version Size of Address Space
IPv6 128 bits, which allows for 2128 or 340,282,366,920,938,463,463,374,607,

431,768,211,456 (3.4 × 1038) possible addresses.

IPv4 32 bits, which allows for 232 or 4,294,967,296 possible addresses.

The relatively large size of the IPv6 address is designed to be subdivided into hierarchical routing domains 
that refl ect the topology of the modern-day Internet. The use of 128 bits provides multiple levels of hierar-
chy and fl exibility in designing hierarchical addressing and routing. The  IPv4-based Internet currently lacks 
this fl exibility [MSD200401].

The   IPv6 address is represented as eight groups of 16 bits each, separated by the “ : ” character. Each 16-bit 
group is represented by four hexadecimal digits (also known as hex digits); that is, each digit has a value 
between 0 and 15 (0, 1, 2, ... A, B, C, D, E, F with A = 10, B = 11, and so on to F = 15). What follows is an 
IPv6 address (fi ctitious) example:

3223:0ba0:01e0:d001:0000:0000:d0f0:0010

An   abbreviated format exists to designate IPv6 addresses when all endings are 0. For example:

3223:0ba0::

 is the abbreviated form of the following address:

3223:0ba0:0000:0000:0000:0000:0000:0000

Similarly, only one 0 is written, removing 0’s in the left side, and four 0’s in the middle of the address. For 
example, the address:

3223:ba0:0:0:0:0::1234

 is the abbreviated form of the following address:

3223:0ba0:0000:0000:0000:0000:0000:1234

There is also a method to designate   groups of IP addresses or subnetworks that is based on specifying the 
number of bits that designate the subnetwork, beginning from left to right, using remaining bits to designate 
single devices inside the network. For example, the notation:

3223:0ba0:01a0::/48

 indicates that the part of the  IP address used to represent the subnetwork has 48 bits. Since each hexa-
decimal digit has 4 bits, this points out that the part used to represent the subnetwork is formed by 12 hex 
digits—that is, “3223:0ba0:01a0”. The remaining digits of the IP address would be used to represent nodes 
inside the network.

There are some special IPv6 addresses, as follows:
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•  Auto-return or loopback virtual address. This address is specifi ed in IPv4 with 127.0.0.1 ad-
dress. In IPv6 this address is represented as ::1. 

•  Not specifi ed address (::). It will never be allocated to any node since it is used to indicate absence 
of address. 

•  IPv6 over IPv4 dynamic/automatic tunnels. They are designated as IPv4-compatible IPv6 ad-
dresses, and allows the sending of  IPv6 traffi c over IPv4 networks in a transparent manner. They 
are represented as ::, for example, ::156.55.23.5. 

•   IPv4 over IPv6 addresses automatic representation. They allow for IPv4 only nodes to still work 
in IPv6 networks. They are designated as “mapped from IPv4 to IPv6 addresses.” They are repre-
sented as ::FFFF:, for example, ::FFFF.156.55.43.3. 

Appendix A provides a basic glossary of IPv6 terms and concepts, all of which will be discussed in detail 
throughout the text.

1.2.4  Basic Protocol Constructs
Table 1.2 shows the core protocols that comprise IPv6 apparatus [MSD200401] (see Appendix B for a more 
inclusive listing).

Table 1.2:  Key IPv6 protocols.

Protocol Description

IPv6:
RFC 2460

IPv6 is a connectionless, “unreliable” datagram protocol used for routing packets between 
hosts.

  Internet Control Message 
Protocol for IPv6 (ICMPv6):
RFC 2463

Internet Control Message Protocol for IPv6 (ICMPv6) enables hosts and routers that use 
IPv6 communication to report errors and send simple status messages.

   Multicast Listener Discovery 
(MLD):
RFC 2710, RFC 3590, RFC 3810

Multicast listener discovery enables you to manage subnet multicast membership for IPv6. 
MLD is a series of three ICMPv6 messages that replace the Internet Group Management 
Protocol (IGMP) v3 that is used for IPv4.

  Neighbor discovery (ND):
RFC 2461

Neighbor discovery is a series of fi ve ICMPv6 messages that manage node-to-node 
communication on a link. Neighbor discovery replaces Address Resolution Protocol (ARP), 
ICMPv4 router discovery, and the ICMPv4 redirect message and provides additional 
functions.

Like IPv4, IPv6 is a connectionless, unreliable datagram protocol used for routing packets between hosts. 
“  Connectionless” means that a session is not established before exchanging data; “unreliable” means that 
delivery is not guaranteed. IPv6 always makes a best-effort attempt to deliver a packet. An IPv6 packet might 
be lost, delivered out of sequence, duplicated, or delayed. IPv6 does not attempt to recover from these types of 
errors. The acknowledgment of packet delivery and the recovery of lost packets are done by a higher-layer pro-
tocol, such as TCP [MSD200401]. From a packet-forwarding perspective, IPv6 operates just like IPv4. An  IPv6 
packet, also known as an   IPv6 datagram, consists of an    IPv6 header and an   IPv6 payload, as shown Figure 1.4.

IPv6 Packet 

IPv6 Header IPv6 Payload 

Figure 1.4:  IPv6 packet.
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The IPv6 header consists of two parts: the  IPv6 base header, and optional extension headers. Functionally, 
the optional extension headers and upper-layer protocols, for example TCP, are considered part of the IPv6 
payload. Table 1.3 shows the fi elds in the  IPv6 base header [MSD200401], while Figure 1.5 depicts the header 
graphically, along with the extension header mechanism. IPv4 headers and IPv6 headers are not directly 
interoperable—hosts or routers must use an implementation of both  IPv4 and IPv6 in order to recognize and 
process both header formats. This gives rise to a number of complexities in the migration process between 
the IPv4 and the IPv6 environments; however, techniques have been developed to handle these migrations.

Table 1.3:    IPv6 base header.

IPv6 Length Function
Version 8 bits Identifi es the version of the protocol. For IPv6, the version is 6.

Class 8 bits Intended for originating nodes and forwarding routers to identify and distinguish 
between different classes or priorities of IPv6 packets.

 Flow label 20 bits Defi nes how traffi c is handled and identifi ed. A fl ow is a sequence of packets either 
sent to a unicast or a multicast destination. This fi eld identifi es packets that require 
special handling by the IPv6 node. The following list shows the ways the fi eld is 
handled if a host or router does not support fl ow label fi eld functions: 
•  if the packet is being sent, the fi eld is set to zero,
•  if the packet is being received, the fi eld is ignored. 

Payload length 16 bits Identifi es the length, in octets, of the payload This fi eld is a 16-bit unsigned integer. 
The payload includes the optional extension headers, as well as the upper-layer 
protocols, for example, TCP.

 Next header 8 bits Identifi es the header immediately following the IPv6 header. The following list shows 
examples of the next header: 
  0 = Hop-by-hop options 
  1 = ICMPv4 
  4 = IP in IP (encapsulation) 
  6 = TCP 
  17 = UDP 
  43 = Routing 
  44 = Fragment 
  50 = Encapsulating security payload 
  51 = Authentication 
  58 = ICMPv6 
  59 = None 
  60 = Destination options 

 Hop limit 8 bits Identifi es the number of network segments, also known as links or subnets, on which 
the packet is allowed to travel before being discarded by a router. The hop limit is set 
by the sending host and is used to prevent packets from endlessly circulating on an 
IPv6 internetwork. 
When forwarding an  IPv6 packet, IPv6 routers must decrease the hop limit by 1, and 
must discard the IPv6 packet when the hop limit is 0.

 Source
address

128 bits Identifi es the IPv6 address of the original source of the IPv6 packet.

 Destination
address

128 bits Identifi es the IPv6 address of the intermediate or fi nal destination of the IPv6 packet.
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Version Traffic Class 

Payload Length 

IPv6 Header TCP Header Data 

(a) IPv6 Header 

(b) Extension Headers 

Next Header Hop Limit 

Flow Label 

IPv6 Header TCP Header Data IPv6 Header Fragment Header RH = Routing Header
FH = Fragmentation Header

Figure 1.5: IPv6 header mechanism (graphical representation).

1.2.5 IPv6 Autoconfi guration
IPv6 “autoconfi guration” is a new characteristic of the protocol that facilitates network management and 
systems setup tasks by users. This characteristic is often designated as “ plug-and-play” or “connect-and-
work.” This facilitates initialization of user devices; after connecting a device to an IPv6 network, one or 
several IPv6 globally-unique addresses are automatically allocated.

The “ autoconfi guration” process is fl exible, but it is also complex; the complexity arises from the fact that 
various policies are or may be defi ned and implemented by the network administrator. The administra-
tor determines the parameters that will be assigned automatically. At a minimum (and/or when there is no 
network administrator), the allocation of a “link-local” address is often included. The “link-local” address 
allows the communication with other nodes placed in the same physical domain. Note that “link” has some-
what of a special meaning in IPv6, as follows: A communication facility or medium over which nodes can 
communicate at the link layer—that is, the layer immediately below IPv6. Examples are: Ethernet (simple 
or bridged), PPP links, X.25, frame relay, or Asynchronous Transfer Mode (ATM), networks, Internet (or 
higher) layer “tunnels,” such as tunnels over  IPv4 or IPv6 itself [DEE199801].

Two autoconfi guration basic mechanisms exist: (1) Stateful and, (2) Stateless. Both mechanisms can be used 
in a complementary manner and/or simultaneously to defi ne confi guration parameters, as discussed next 
[IPV200501].

  Stateless autoconfi guration is also described as   serverless. There is no need for a confi guration server to 
supply profi le information. In this environment, manual confi guration is required only at the host level; a 
minimal confi guration at the router level is occasionally needed. The host generates its own address using a 
combination of the information that it possesses (in its interface or network card), and the information that 
is periodically supplied by the routers. Routers determine the prefi x that identifi es networks associated to 
the link under discussion. The “  interface identifi er” identifi es an interface inside a subnetwork and is often, 
and by default, generated from the MAC address of the network card. The IPv6 address is built combining 
the 64 bits of the   interface identifi er with the prefi xes that routers determine as belonging to the subnetwork. 
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If there is no router, the    interface identifi er is self-suffi cient to allow the PC or VoIP handset to generate the 
“link-local” address. The link-local address is suffi cient to allow the communication between several nodes 
connected to the same link (the same local network).

  Stateful confi guration requires a server to send the information and parameters of network connection to nodes 
and hosts. The confi guration server maintains a database with all addresses allocated and a mapping of the 
hosts to which these addresses have been allocated, along with any information related with all requisite param-
eters. In general, this mechanism is based on the use of DHCPv6.

Stateful  autoconfi guration is often employed when there is a need for rigorous control in reference to the 
address allocated to hosts; in stateless autoconfi guration, the only concern is that the address be unique. 
Depending on the network administrator policies, it may be required that some addresses be allocated to 
specifi c hosts and devices in a permanent manner; here, the stateful mechanism is employed on this subset 
of hosts, but the control of the remaining parameters and/or nodes could be less rigorous. In some environ-
ments/applications there are no policy requirements on the importance of the allocated addresses, but there 
may be rules on the parameters; for example, that they be allocated in a certain “static” manner, with infor-
mation stored in a server. In this situation the “stateless” mechanism can be used.

IPv6 addresses are “rented” to an interface for a fi xed-established time (including an infi nite time). When 
this “ lifetime” expires, the link between the interface and the address is invalidated, and the address can be 
reallocated to other interfaces. For the suitable management of addresses expiration time, an address goes 
through two states (stages) while is affi liated to an interface [IPV200501]:

First, an address is in a “ preferred” state, so its use in any communication is not restricted.
Second, an address may become “ deprecated,” indicating that its affi liation with the current inter-
face will (soon) be invalidated.

While it is in the “deprecated” state, the use of the address is discouraged, although it is not forbidden. How-
ever, when possible, any new communication (for example, the opening of a new TCP connection) must use a 
“preferred” address. A deprecated address should only be used by applications that already used it before and 
in cases where it is diffi cult to change this address to another address without causing a service interruption.

To ensure that allocated addresses (granted either by manual mechanisms or by autoconfi guration) are 
unique in a specifi c link. the “link duplicated addresses detection algorithm” is used. The address to which 
the duplicated address detection algorithm is being applied to is designated (until the end of this algorithmic 
session) as an “attempt address.” In this case, it does not matter that such address has been allocated to an 
interface—received packets are discarded.

Next, we’ll describe how an IPv6 address is formed. The lowest (rightmost) 64 bits of the address identify 
a specifi c interface, and are designated as  interface identifi er. The highest (leftmost) 64 bits of the address 
identify the “path” or the “prefi x” of the network or router in one of the links in which such interface is con-
nected. The IPv6 address is formed by combining the prefi x with the  interface identifi er.

It is possible for a host or device to have    IPv6 and IPv4 addresses simultaneously. Most of the systems that 
currently support IPv6 allow the simultaneous use of both protocols. This way, it is possible to support 
communication with IPv4 only networks, as well as IPv6 only networks, and the use of the applications 
developed for both protocols [IPV200501]. 

Is it possible to transmit   IPv6 traffi c over IPv4 networks; this is accomplished using tunneling methods. This 
approach consists of “wrapping” the IPv6 traffi c as IPv4 payload data. IPv6 traffi c is sent “encapsulated” 
into IPv4 traffi c and at the receiving end this traffi c is separated and then parsed as IPv6 traffi c. Transition 
mechanisms are methods used for the coexistence of  IPv4 and/or IPv6 devices and networks. For example, 

1.
2.
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an “IPv6-in-IPv4 tunnel” is a transition mechanism that allows IPv6 devices to communicate among them 
through an IPv4 network. The mechanism consists of creating the IPv6 packets in a normal way and intro-
ducing them in an IPv4 packet. The reverse process is undertaken in the destination machine, which receives 
an IPv6  packet.

There is a signifi cant difference between the procedures to   allocate IPv4 addresses, which focus on the 
parsimonious use of addresses (since addresses are a scare resource and should be managed with caution), 
and the procedures to allocate IPv6 addresses, that focus on fl exibility. Internet Service Providers (ISPs) 
deploying the IPv6 systems follow the  Regional Internet Registries (RIRs) policies relating how to assign 
IPv6 addressing space among their clients. RIRs are recommending ISPs and operators to allocate to each 
IPv6 client a /48 subnetwork; this allows clients to manage their own subnetworks without using NAT. (The 
implication is that the need for NAT disappears in IPv6).

In order to allow its maximum scalability, the IPv6 protocol uses an approach based on a   basic header, with 
minimum information (refer back to Figure 1.5). This differentiates it from IPv4 where different options are 
included in addition to the basic header. IPv6 uses a header “concatenation” mechanism to support supple-
mentary capabilities. The advantages of this approach include the following:

• The size of the basic header is always the same, and is well known. The basic header has been 
simplifi ed compared with  IPv4, since only eight fi elds are used instead of twelve. The basic IPv6 
header has a fi xed size; hence, its processing by nodes and routers is more straightforward. Also, 
the header’s structure aligns to 64 bits, so that new and future processors can process it in a more 
effi cient way.

• Routers placed between a source point and a destination point (that is, the route that a specifi c 
packet has to pass through) do not need to process or understand any “following headers.” In other 
words, in general, interior (core) points of the network (routers) only have to process the basic 
header, while in IPv4 all headers must be processed. This fl ow mechanism is similar to the opera-
tion in MPLS, yet precedes it by several years.

• There is no limit to the number of options that the headers can support (the IPv6 basic header is 
40 octets in length, while IPv4 one varies from 20 to 60 octets, depending on used options).

In IPv6, interior/core routers do not perform packet fragmentation, rather the fragmentation is performed 
end-to-end. That is, source and destination nodes perform, by means of the IPv6 stack, the fragmentation of 
a packet and then the reassembly, respectively. The fragmentation process consists of dividing into smaller 
packets the "fragmentable" part of the source packet, and adding to each one the “unfragmentable” part 
[IPV200501].

Finally, a "jumbogram” is an option that allows an IPv6 packet to have a payload greater than 65,535 bytes. 
Jumbograms are identifi ed with a 0 value in the payload length in the IPv6 header fi eld, and include a jumbo 
payload option in the hop-to-hop options header. It is anticipated that these packets will be used specially for 
multimedia traffi c.

1.2.6 Applications
 IPv6 networks have a large number of possible applications that range, among others, from corporate 
intranets, institutional networks and extranets, mobility networks, hotspot networks, ubiquitous comput-
ing networks,  3G wireless networks, VoIP carrier networks, the global Internet and, government networks 
including the global grid. Figure 1.1 identifi ed a gamut of such possible applications. The emphasis in this 
book is the VoIP application.
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IPv6 enables new network models, specifi cally, integration and  end-to-end security, as depicted graphically 
in Figure 1.6.
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Figure 1.6: IPv6 integration and  end-to-end security.

As noted, among other applications, some see applicability of IPv6 to carrier’s 3G Wi-Fi® (IEEE 802.11a/
b/g/n technologies) and to Voice over Wi-Fi (VoWi-Fi) applications. Carriers seek to add off-net mobility to 
existing voice services and extend existing branded services beyond coverage areas. Applications include in-
building coverage (leveraging Wi-Fi indoor systems to improve coverage within shielded buildings), virtual 
calling card, call forwarding, off-net roaming, enabling of mobility in multimedia services (leverage the 
mobility and high speed of Wi-Fi to expand market, for example, personal video conferencing.) Issues for 
second-generation Wi-Fi solutions that appeared in the mid-2000s include the following [ISL200501]:

• Provisioning a large number of Access Points (APs).
• Radio planning and manual AP confi guration not being cost effective.
• Desire for auto confi guring, self-healing, meshed network topology.
• User authentication and security.
• Web login is fi ne for Enterprise but not  Service Provider (SP).
• Security is a major issue for Enterprise usage of public  Wi-Fi services.
• Limited mobility.
• In-building roaming works fi ne for enterprise, but not yet for SPs.
• Dropped connections are undesirable for multimedia services.

Third-generation Wi-Fi services are expected to provide carrier-class secure mobility. This is achieved by 
cost effective deployment of thousands of access points. In turn, this requires network discovery and auto 
confi guration; over-the-air and network level security ( IEEE 802.11i along with peer-to-peer connectivity). 
Finally, one also needs seamless roaming from home to a hotspot network (which requires  Virtual Local 
Area Network [VLAN] switching along with   Mobile IPv6.) Figure 1.7 depicts a view of the 3G Wi-Fi envi-
ronment, while Figure 1.8 depicts graphically the improvements in VoIP mobility support in a 3G VoWi-Fi 
future state as enabled by IPv6.
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1.2.7  Transition Approaches
As discussed earlier, a number of transition mechanisms exist. The most common approach under consider-
ation is the dual-stack approach illustrated in Figure 1.9 [CAB200501]. This topic will be re-examined in later 
chapters. 
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Figure 1.9:   Dual-stack transition.

This preliminary overview of IPv6 highlights the advantages of the new protocol and its applicability to a 
whole range of applications, including VoIP.

1.3 Introductory Overview of VoIP

1.3.1 Overview
As implied in the previous sections, data networks based on packet technology in general, and IP in particu-
lar, have progressed to the point that it is now possible to support voice and multimedia applications over 
such networks. Enterprise networks, cellular carriers, voice-over-cable carriers,   “triple-play” carriers, “  pure-
play VoIP carriers,” and even traditional voice carriers are all moving rather aggressively to a VoIP paradigm. 
This is driven by the interest in convergence, which so far has been an elusive goal, in practical terms for the 
past 30 years. IP promises to be the “Holy Grail” of convergence. 

Given this extensive deployment of data networking resources, the questions that have presented themselves 
in the past few years are, “Was it possible to use the investment already made in enterprise networks to carry 
real-time voice in addition to the data?” and, “Is it possible to deploy IP-based networks in the carrier’s 
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domain to carry real-time voice in place of circuit-based technology?” As we stated at the beginning of 
this chapter, the desire to build one integrated network goes back to the 1970s, if not earlier. The Advanced 
Research Projects Agency, with project DACH-15-75-C0135 (and many other projects with many other 
researchers), funded the author’s work in 1975 to look at the feasibility of integrated voice and data packet 
networking [MIN199801], [MIN199802], [MIN197902], [MIN197903], [MIN197904], [MIN197906]. During the past 
decade or so, the answers to these questions have been given in the affi rmative. At press time, a large equip-
ment manufacturer was stating that they had placed 3 million IP phones with 15,000 customers worldwide; 
other leading manufacturers probably have a similar deployed base. 

For enterprise environments, many companies have already deployed IP-based backbones that provide both 
broadband capabilities and QoS-enabled communications. Large companies have deployed broadband ser-
vices such as   ATM, MPLS,   Packet over Synchronous Optical Network (POS), or metro-packet services such 
as metro-gigabit Ethernet, or   Resilient Packet Ring (RPR) in their wide area cores. High-speed wide area 
technology provides increased bandwidth across the enterprise’s regional, nationwide, and international net-
works. Link layer switching technology, particularly in terms of the switched Local Area Networks (LANs) 
and ancillary Layer 2 switches, has come a long way in the past ten years, providing higher-capacity, 
lower-contention services across the enterprise campus network. IEEE 802.1p/802.1Q protocols provide pri-
oritization capabilities at the Ethernet level. Network-level QoS-supporting protocols, such as differentiated 
services (diffserv) in  IPv4, IPv6, and   MPLS, along with supporting router equipment and traffi c management 
policies are now being deployed in many enterprises’ networks. All of this opens the door for the possibility 
of carrying voice over the enterprise network.

For carrier environments, many providers have taken the opportunity of modernizing the existing   Public 
Switched Telephone Network (PSTN) with an IP-based infrastructure that supports multiple services (de-
scribed by some as   Services over IP (SoIP) in general, and VoIP in particular. These carriers include both 
wireline and wireless providers. Other carriers with a “greenfi eld” voice environment; for example, cable TV 
operators or hotspot providers have chosen a VoIP approach from the get-go. Figure 1.10 depicts a typical 
carrier/enterprise VoIP environment.

1.3.2 First-Generation 1G VoIP Networks
A number of approaches have been advanced over the years to accomplish media/service integration. 
IP-based networks have emerged as the only viable mechanism to achieve this.   Integrated Services Digital 
Network (ISDN) research started in Japan in the early 1970s (before the idea started to get some real atten-
tion in North America and in Europe in the late 1970s and early 1980s) with the explicit goal of developing 
and deploying integrated networks. However, a lot of the mainstream work has been in supporting voice 
and data over “  circuit-switched”    TDM networks. Only some early packet-over-data work (but not limited 
to [MIN197901], [MIN197902], [MIN197903], [MIN197904], [MIN197905], [MIN197906], [MIN197907], [MIN197908]), and 
then some  Fiber Distributed Data Interface II (FDDI II) and   integrated voice/data LAN (IEEE 802.9) work, 
looked at voice support in a noncircuit-mode network. Even for ATM, the emphasis has been mostly on data 
services, but some VoP usage has taken place [MIN199802]. The idea of carrying voice-over-data networks has 
received considerable commercial attention in the past ten years. 
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Figure 1.10: The   VoIP environment.

The basic   1G commercial VoIP products started to appear in the mid- to late-1990s. These products were 
rudimentary and typically only supported basic telephony services; for example, fundamental intranet-level 
dial-tone and PSTN trunk bypass. In addition to failing to have a rich feature set, this generation of products 
lacked commercial-grade reliability and had very limited signaling capabilities (advanced features depend 
intrinsically on sophisticated signaling capabilities.) In general, the equipment also did not support QoS, 
inline power, and   E911 services.
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1.3.3   Second-Generation 2G VoIP Networks
 Connectionless IP-based networks are ubiquitous, and so there is a desire to carry business-quality voice 
over them. 2G VoIP products were brought to the market in the early- to mid-2000s. These products started 
to support more advanced telephony services; for example, conferencing, least-cost-routing, QoS, and some 
wireless and security features. Reliability and manageability improved. Most importantly, the gamut of VoIP 
equipment started to support signaling capabilities in a more intrinsic manner and based on somewhat ma-
ture standards (for example, H.323v3 and/or SIP). The equipment also typically supported inline power and 
basic E911 services. However, integration with legacy (or other vendor’s) e-mail systems remained problem-
atic, as is support of unifi ed messaging and centralized directories (LDAP-based directories, for example to 
support single sign-on features.)

Many standards bodies, industry forii, and other entities (e.g., IETF, IEEE for power over Ethernet) have 
published specifi cations in recent years, and a whole battery of voice-over-data network equipment has ap-
peared and/or is appearing. For example, a plethora of IP phones for enterprise applications and IP-to-public 
network gateways has entered the market. 

Noteworthy is the standardization work on Session Initiation Protocol, where over 60 RFCs had been devel-
oped by the Internet Engineering Task Force (IEFT) by 2005.

The major challenge in this regard is that public IP networks and many enterprise networks do not intrinsically 
support QoS features (even though the capabilities are now built into the end user VoIP equipment). Also, there 
are a host of security issues including fi rewalling, NAT-ing, and proxying. In addition to the NAT/security/end-
to-end seamlessness problems, one has to deal with the lack of true internetworking between suppliers, forcing 
a fi rm or organization to buy all the equipment from a single vendor, thereby institutionalizing the long-existing 
enslavement of the telephone handset to the Private Branch Exchange (PBX) node. Additionally, one has do 
deal with the relatively high handset costs, typically ranging from $400–$1000 depending on features—even 
the softphone (which are enslaved to the VoIP elements because of vendor-proprietary signaling or signaling 
extensions) can be relatively expensive typically ranging from $200–$350.

Table 1.4 depicts some market observations and statistics to position the evolution of VoIP services in 
context, as it relates to 2G systems. In spite of the interest, impetus and hype that has been seen in the past 
ten years, the actual deployment so far has been relatively modest from a global perspective; however, the 
rollout of 2G systems is now reaching an infl ection point, with a lot of market critical mass and momentum. 

Table 1.4: Some market statistics to position the evolution of VoIP services.

 Penetration Trends (Market Information)

Despite the growing popularity of VoIP calling, VoIP phones in the enterprise will not represent the majority 
of installed PBX base until 2009, says a new report from Insight Research. PBXs are the phone systems used 
by large companies to route calls to individual offi ces, and though shipments between 2004 until 2009 of 
the newer VoIP PBX phones are expected to grow at a compounded rate of more than 20% over the forecast 
period while the older  TDM-based phone technology decline at roughly the same rate, the older TDM phone 
technology will continue to dominate the installed base until the end of the decade, says a new report from 
Insight Research. According to Insight Research, “By 2009, the installed base of IP equipment will dominate 
the enterprise landscape, but that’s still fi ve years away. The cost of going VoIP is certainly a factor here, since 
the price of newer IP phones will continue to be about 25% higher than the TDM alternative, even as volume 
shipment of VoIP phones takes off. VoIP never was and never will be the least expensive way to deliver voice 
to the enterprise—but the allure of VoIP’s rich applications will slowly convert enterprise legacy customers.” 
[INS200401] 

Minoli_Book.indb   20Minoli_Book.indb   20 3/9/2006   6:29:43 PM3/9/2006   6:29:43 PM



Introduction

21

According to a study Forrester Research conducted in 2004, about 15% of the 818 companies surveyed said 
they had completed or were in the process of rolling out VoIP systems [REA200401].

Frost & Sullivan, found in a 2003 survey that fewer than 4% of the new contact center systems installed 
in North America are VoIP systems. While that is a small number, she expects it to jump to 35% by 2006 
[REN200301].

Infrastructure Trends (Market Information)

“… InformationWeek Research survey of 140 businesses shows that of those who combined their voice and 
data traffi c onto one network, 16% went back to separate networks. Half of them say that administrative 
and management problems prompted the split and 44% cite insuffi cient IT infrastructure. Some 38% also 
cite consistency-of-service issues and diffi culties in resolving service problems … {There is an issue as to} how 
much needs to be upgraded or replaced. In the survey, nearly 60% of the respondents say they upgraded 
routers and switches, 58% upgraded servers, 51% upgraded bandwidth, 38% upgraded network-admin-
istration software…only 16% did not need any upgrade on any part of their network infrastructures…” 
[INF200401]

“… switching from your PBX to a voice-enabled data network is not as straightforward as calling up your 
nearest supplier and making an appointment. Chances are your router-based data network is counted among 
the estimated 85% of networks in use today that are not ready to support VoIP services without modifi cation. 
And even if you are among the fortunate 15%, can you be sure that your network will reliably handle VoIP 
traffi c over a long-term rollout, and what will the impact be on your other business-critical applications? These 
are the questions forward-thinking CIOs and system administrators are asking themselves before consider-
ing—let alone committing to—a wholesale VoIP switch…” [INT200401]

1.3.4 Pragmatic  Enterprise 2G VoIP Deployment Approaches
The subsections that follow focus on enterprise-level applications of VoIP. A number of 2G converged 
communication architectures that can be utilized by enterprise organizations have emerged in recent years 
[MIN199801], [MIN199802], [MIN200201], [MIN200202]. Typically two issues are of interest to fi rms: (1) cost-re-
ductions either in toll charges or in run-the-engine costs as vendor proprietary PBX hardware is replaced 
with standardized server-based technology and, (2) functional enhancements, specifi cally mobility to 
support a nomadic (mobile) workforce. For enterprises, ultimately a pure-IP environment supporting end-
to-end IP telephony, unifi ed messaging, and   VoWi-Fi to cellular roaming will be required to secure all of the 
advancements possible with VoIP, including presence and cost-effectiveness. For carriers, the motivation for 
a pure-IP environment is the support of user needs, in conjunction with enterprise migrations to this technol-
ogy. This is where IPv6 will have the most impact.

However, stakeholders are approaching the migration with a degree of pragmatism, as it should in fact be the 
prudent case. In this section, we’ll briefl y review the possible approaches. All of them are  IPv4-based.

The array of available   VoIP platforms and architectural alternatives complicates the decision regarding the 
selection of a single target architecture (and, ultimately, of a vendor/product suite). Given this, the pragmatic 
approach followed by for-profi t organizations is to identify a set of stage-based architectures that allow the 
organization to seamlessly migrate to a cohesive, all-inclusive, end-stage (fi nal) architecture. In all instances, 
any proposed architecture must allow for ease of migration and consistent cost-effectiveness in order to be a 
viable approach. 

Considering the installed base of   PBXs and station equipment, it becomes imperative that any new IP-based 
system be able to integrate effectively with the existing solution and facilitate infl ection toward more mature 
solutions. The interworkability of IP allows for next-generation telephony systems to be architected in more 
of a decentralized fashion than was possible before (specifi cally the voice-supporting switching gear need 
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not be housed in the immediate proximity of the users served as was the case with traditional PBXs). In 
VoIP, the IP network per se becomes the switch, with call processing and applications residing in separate 
servers distributed across the network. 

The major 2G architectural alternatives that have evolved at the commercial/deployment level are as follows:

• VoIP trunking only;
•  Traditional PBXs with IP adjunct extensions (enhancements);
•  Hybrid TDM  and IP systems, and 
•  Pure IP server-based telephony systems.

At this instance in time, most enterprises appear to have a preference for traditional PBX with IP adjunct 
extensions, while the rest favors an IP server-based approach.2 

1.3.5 2G  VoIP Trunking Only
This fi rst stage solution uses the intranet to handle PBX-to-PBX tie lines, for site-to-site communication. 
See Figure 1.11. Currently some companies are using  ADPCM over-AAL1-over ATM. While ATM provides 
excellent QoS to the directly-attached (virtual) circuits (tie lines), these fi rms are not getting the most band-
width effi ciency possible, especially if constant bit rate services are used. A reduction in bandwidth of 75% 
is achievable using IP trunking and going from 32 kbps to 8 kbps voice.

The advantage of this approach is that it allows least cost routing, as shown in Figure 1.12. Notice that 
generally this requires an external gateway, unless the PBX has a gateway blade that can be utilized. One 
limitation of this approach is that calls cannot be transferred multiple times because of the repetitive encod-
ing/decoding stages.

2   From a supplier perspective, Avaya and Cisco have the largest market share in today’s enterprise market; competitors such as Alcatel 
and Nortel are closing the market gap.
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1.3.6 2G   Traditional PBXs with IP Adjunct Extensions (Enhancements) 
This second-stage solution uses an adjunct (either as add-on hardware/blade in a slot on the PBX or as an 
external server to the PBX), to handle a small set of IP phones typically limited to one department or site 
(say, ~10% of the total population). The major portion of the enterprise-wide signaling and trunking, how-
ever, is still handled by the traditional PBX. This approach allows initial deployment of a VoP island, and the 
coexistence and intercommunication of the conventional corporate telephony network (conventional phones 
connected to PBX) and the local(lized) IP telephony network. The scenario is suitable when the local IP 
telephony network is built out gradually in an institution that already has a conventional telephony network. 
In a later stage, the conventional telephony network and the   PBX can be totally replaced by the IP telephony 
network. See Figure 1.13.
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1.3.7 2G    Hybrid TDM  and IP Systems 
This third-stage solution uses a major intrinsic PBX upgrade (but not replacement) to handle a larger set of 
IP phones (say, between 30% and 50% of the total population), while at the same time handling a nontrivial 
amount of traditional telephone handsets. Trunk-to-trunk signaling and transport is still handled by the 
traditional PBX, and it could entail both    TDM trunking and   IP trunking (at this stage the ratio of trunk-
ing technology between TDM and IP is probably around 50/50). This approach allows the coexistence and 
interconnection of major portions of the surviving conventional telephony network (conventional phones 
connected to PBX) with the local IP telephony network, while at the same time supporting a major and 
robust shift (migration) to an IP-based environment. See Figure 1.14. The scenario also makes optimal use 
of traditional handsets, because such handsets can continue to be employed until an end-of-life situation 
requires a migration and/or the inventory of traditional handsets is depleted due to normal wear-and-tear. 
When such stage is reached, the affected population of users are migrated to the IP side of the system. 

Minoli_Book.indb   25Minoli_Book.indb   25 3/9/2006   6:29:46 PM3/9/2006   6:29:46 PM



Chapter 1

26

PSTN

ATM/MPLS
BackboneData Data

Trunk

IP

IP

IP

TrunkTrunkTraditional
Handsets

Traditional
Handsets

Trunk

Subnet/
Segment

IP Tel

IP Tel

IP 
Telephony

Subnet/
Segment

IP Telephony
Call Server

IP Telephony
Call Server

IP Tel

IP Tel

IP 
Telephony

TDM “Side” IP “Side” TDM “Side” IP “Side”

Figure 1.14:  Hybrid environments

1.3.8 2G  Pure IP Server-Based Telephony Systems
This fi nal-stage solution applies either in a completely-greenfi eld situations, or when an existing PBX is 
fully depreciated. At this stage, IP telephony can be considered as a complete replacement alternative to a 
traditional PBX. See Figure 1.15. In fact, this can position a company for a possible next-move at a point in 
the future to 3G VoIP based on IPv6.

An issue of interest to many large fi rms, however, is if the call control equipment and the telephone handsets 
are truly open (such as would be the case if both classes of equipment fully implemented a set of specifi ca-
tions, e.g., SIP). For decades fi rms were forced to purchase the PBX hardware and the handsets from the 
same vendor; in fact, the money-making proposition for the vendor was the handset equipment, not the 
switching fabric (the PBX). At this juncture, fi rms would like to be able to obtain the equipment from a 
variety of suppliers, and large organizations may be taking a “wait-and-see” approach on VoIP until the 
interworking question is fully resolved. The motivation is the desire to be able to retain the (fairly expensive) 
handsets if/when the switching elements (e.g., SIP proxy) is replaced with equipment from another vendor.
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Figure 1.15. IP-telephony fully replacing PBX.

1.3.9 Possible   Evolution Paths for 2G Deployments
A number of pragmatic VoIP deployment strategies for the pre-VoIPv6 environment are possible, as seen 
in Figure 1.16. Many enterprise companies follow “Approach Alpha” depicted in this fi gure, which is fairly 
conservative and allows the company to gradually enter the VoIP space, while at the same time taking into 
account (and taking advantage of) the embedded base. 

An approach such as “Approach Delta” is relatively radical and not easily cost-justifi able in typical corpo-
rate settings, especially for large fi rms (say fi rms with 10,000+ employees). In fact, as of 2005 only about a 
couple dozen large fi rms (fi rms with >10,000 employees) has migrated to VoIP, as can be gleaned from the 
open press, and even these tend to be in the HQ-with-high-branch-population environments (for example, 
banks and brokerage fi rms), where the remote branch offi ces appear to be relatively stand-along small of-
fi ces, rather than environments with a handful of massive campuses. Approach Delta is basically a “fork lift” 
approach; it may be applicable to greenfi eld environments, extreme end-of-life situations, or small environ-
ments (25–200 stations.)  
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All approaches listed in the preceding subsections have intrinsic “pros” and “cons,” and may, given further 
analysis, be potential avenues of deployment for an organization.
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Deploy QoS/PoE

Deploy QoS/PoE

PBX with IP Adjunct
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Hybrid TDM/IP Pure IP (Enterprise-wide)

VoIP Trunking Only PBX with IP Adjunct
Extensions

Hybrid TDM/IP Pure IP (Enterprise-wide)

VoIP Trunking Only PBX with IP Adjunct
Extensions

Hybrid TDM/IP Pure IP (Enterprise-wide)
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Hybrid TDM/IP Pure IP (Enterprise-wide)
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2H06 2H07

1H07 2H07
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Approach Beta

Approach Gamma

Approach Delta

Approach Epsilon

Figure 1.16: Possible deployment strategies (pre-VoIPv6) – enterprise environments.

1.4   Third-Generation 3G VoIP Networks
The next-generation VoIP network constructs are just around the corner. These networks will be character-
ized by the following features:

• Full end-to-end IP-based (specifi cally IPv6-based);
• Fully accessible to/from any user in the world;
•  SIP-based for advanced signaling;
• Seamless integration with corporate enterprise networks from a protocol and security perspective;
• QoS-enabled in the    Wireless LAN (WLAN) environment;
• Integrations with    3G cellular systems;
• Commercial-grade service levels/reliability/security;
• End-to-end QoS enabled (across multiple public networks);
• Support of low bit-rate video/videoconferencing;
• Media/network independent fully   converged system, regardless of the (potential mixed) use of 

cable TV networks, cellular networks, hotspot networks, pure-play IP networks, traditional net-
works, and/or enterprise networks;
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• Heavy support of   “presence” features (presence/proximity, multimodal and collaborative communi-
cations); and,

• Full integration with other media to support a true unifi ed messaging environment.

Each of the features listed previously could be discussed in a stand-alone text. This book focuses on the IPv6 
technology and its implications with reference to other items on this desiderata list.

Figure 1.17 depicts some deployment strategies vis-à-vis VoIPv6. “Approach Gimmel” is a supercharged 
fork lift to 3G VoIP and probably will not happen within the next couple of years, although there may be 
limited-scope opportunities in some institutional and/or government applications. “Approach Aleph” is ef-
fectively a continuation of the approaches discussed above for the VoIPv4 introduction; this evolution takes 
a measured and conservative approach to the deployment of technology, and may be a reasonable approach 
to the migration is some cases; for example Early Adopters. “Approach Bet” is an evolution strategy that is 
more ambitious than Approach Aleph, but not as radical as Approach Gimmel.

Hybrid TDM/VoIP

Deploy IPv6 End-to-end
Deploy IPv6 Islands with

IPv4 Tunneling Capabilities

Deploy IPv6 End-to-end

Deploy IPv6 End-to-end

Deploy IPv6 Islands with
IPv4 Tunneling Capabilities

Pure IPv4 VoIP Pure PIv6 VoIP Islands End-to-end IPv6 VoIP

Hybrid TDM/VoIP Pure IPv4 VoIP Pure PIv6 VoIP Islands End-to-end IPv6 VoIP

Hybrid TDM/VoIP Pure IPv4 VoIP Pure PIv6 VoIP Islands End-to-end IPv6 VoIP

Approach
Aleph

1H06 1H07 1H08

1H07

1H07

1H08

1H09

Approach
Bet

Approach
Gimmel

Figure 1.17: Possible    enterprise deployment strategies vis-à-vis VoIPv6.

1.5  Deployment/Penetration Issues
The following observations from [DOM200501] provide a counterpoint to this book and are included herewith 
to provide balance.

“Despite the initial expectations raised, IPv6 is clearly far from being extensively deployed, and there-
fore it is too early to claim any complete success for it yet. There are several reasons for this. The fi rst 
is that the dire warnings regarding  IPv4 address exhaustion have not yet materialized. Recent studies 
analyzing past data forecast that IPv4 addresses will hold out beyond 2030 unless new conditions arise 
that bring about a change in the current trend in address consumption, such as a strong demand for ad-
dresses for mobile devices or the addition of a large number of users in China or India. There are several 
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explanations for this change in expectations: tough political control from the RIRs over address assign-
ment, address reuse in dial-up accesses, and so on, but the deployment of has probably played the most 
important part in slowing down address consumption. NATs allow the reuse of a few publicly registered 
addresses in the provision of connectivity to a much larger number of systems. NATs are in widespread 
use, and are now serving both large organizations and residential users. Although NATs’ implementation 
has deferred the address scarcity problem, this has not been achieved without cost. Firstly, connectivity 
has become asymmetric because some nodes are more capable of receiving externally-initiated com-
munications than others. Secondly, end-to-end functions depending on the preservation of the original 
 IP address throughout the communication, such as IPsec security, are now precluded. Addressing these 
issues is now one of the goals of IPv6 supporters. There have also been technological obstacles to the 
success of IPv6. While basic IPv6 standards have been available for some time, the standardization 
process has not been smooth in some key areas, since several important issues, such as DHCPv6 or 
Mobile IPv6, have taken a considerable amount of time to resolve. There have also been some changes 
made to the core specifi cation in recent years, such as the deprecation of site-local addresses, or updates 
to the programming interfaces. There are also some problems to which we are only now beginning to 
fi nd solutions, such as multihoming in IPv6, or what security model to be deployed. But even once 
the technology is fully available, there will still be a great many challenges to be overcome. One of 
the biggest of these is the requirement for applications using the socket interface to be ported to a new 
programming interface to be able to use IPv6, due to dependencies imposed by the socket interface on 
the specifi c protocol to be used. Fortunately, most operating systems already provide support for IPv6. 
Communication hardware providers have been less enthusiastic, and have provided – barring some 
notable exceptions – inferior support for IPv6, compared to  IPv4, in terms of both functionality and per-
formance. Major service providers have also been understandably reluctant to change equipment in their 
operational networks to support a protocol with a relatively low number of users and applications. It is 
clear that the migration process will entail signifi cant costs and complexities for networking organiza-
tions. Finally, there have been no new killer IPv6-based applications or services to attract users.” 

However, this reference continues with:

“Notwithstanding the points raised above, there is some good news for IPv6, and this could be a key 
moment in the migration process. The achievement of a critical mass of IPv6 users may become a real-
ity with the strong political support coming from many Asian countries. Additionally, specifi cations for 
some 3G mobile networks require the deployment of IPv6, so some near-term growth in the number of 
IPv6 users can be expected. IPv6 is also seen as an opportunity for European and Asian communication 
hardware and software providers that have lagged behind North American providers in sales for IPv4 
equipment to gain a new advantage. This, along with the enthusiastic work of organizations promot-
ing IPv6, such as the IPv6 Forum, or the numerous IPv6 Task Forces all over the world, has generated 
political awareness in the European Union. An example outcome of this political interest is the growing 
trend for the requirement of IPv6 support in newly-issued public contracts. Some technologies that can 
only be deployed in their current form using IPv6 are also generating some expectations, such as the 
deployment of  end-to-end security on the network layer, which requires public addressability that can 
only be provided by IPv6; or the possibility of providing full multihoming support for small networks 
or even residential users. Some of these technologies may evolve suffi ciently to convince even the last 
remaining dyed in the wool IPv6-agnostics.”
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1.6 Line of Investigation
As already stated, this book looks at IPv6 opportunities; specifi cally it looks at the use of IPv6 to support a 
next-generation, carrier-class VoIP environments, which we call VoIPv6. As noted, IPv6 offers the potential 
of achieving the scalability, reacheability, end-to-end interworking, QoS, and commercial-grade robustness 
for VoIP that is required if the technology is indeed to replace the TDM  infrastructure around the world. 
Specifi cally, IPv6 deals with the QoS and NAT issues.

This is the fi rst book of its kind to address this issue as a macro-level scalability requirement. The book 
basically is comprised of two sections: an opening section (Chapters 1–5) that looks at applications and 
motivations, and the second part (Chapters 6–8) focuses on the IPv6 itself.

After an introduction in Chapter 1, we provide a quick tutorial in Chapter 2 on VoIP, and in Chapter 3 on 
SIP and signaling. Chapter 4 continues that basic discussion by examining the area of “presence,” which rep-
resents a value-added set of VoIP-based capabilities. Chapter 5 discusses the issues associated with current 
VoIP implementations, as highlighted above. 

Chapter 6 provides a basic introduction to IPv6. Chapter 7 discusses the delivery of voice-over-packet in an 
IPv6 environment. Chapter 8 provides some basic discussion of the transition issues including interworking 
between IPv6 and  IPv4. Europe and Asia are currently leading the way in the planning of IPv6 networks. 

This book should prove useful to VoIP equipment vendors, VoIP service providers (for example, cellular car-
riers, voice-over-cable carriers, “triple-play” carriers, “pure-play VoIP carriers,” and even traditional voice 
carriers), enterprise customers, researchers, planners, and educators.
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Appendix A: Basic  IPv6 Terminology

This Appendix for Chapter 1 provides a basic glossary of IPv6 terms and concepts that are loosely 
based on references [IPV200501] and [MSD200401].
  6over4 An IPv6 mechanism designed to favor the coexistence with  IPv4; it provides unicast and multicast 

connectivity through an IPv4 infrastructure with multicast support, using the IPv4 network as a 
logical multicast link. 

  6over4 Address A |64-bit prefi x|:0:0:WWXX:YYZZ address, where WWXX:YYZZ is the hexadecimal representation 
of w.x.y.z (a public or private IPv4 address), used to represent a device in 6over4 technology. 

  6to4 An IPv6 mechanism designed to favor the coexistence with IPv4, that provides unicast 
connectivity between IPv6 networks and devices through an IPv4 infrastructure. 6to4 uses a 
public IPv4 address to build a global IPv6 prefi x. 

  6to4 Address A |64-bit prefi x|:0:0:WWXX:YYZZ address, where WWXX:YYZZ is the hexadecimal representation 
of w.x.y.z (a public or private IPv4 address), used to represent a device on 6over4 technology. 
A 2002:WWXX:YYZZ:|SLA ID|:|interface ID| address, where WWXX:YYZZ is the hexadecimal 
representation of w.x.y.z (a public or private IPv4 address), used to represent a device on 6to4 
technology. 

  6to4 Machine An IPv6 device that is confi gured, at least, with one 6to4 address (a global address with a 
2002::/16 prefi x). 6to4 devices do not require manual confi guration and they create 6to4 
addresses by means of classical  autoconfi guration mechanisms. 

  6to4 Router Router designed to favor the coexistence with IPv4; it provides unicast connectivity between IPv6 
networks and devices through an IPv4 infrastructure. 6to4 uses a public IPv4 address to build a 
global IPv6 prefi x. 

  Address Network layer identifi er assigned to an interface or set of interfaces that can be used as source or 
destination fi eld in IP datagrams. 

The IPv6 128-bit address is divided along 16-bit boundaries. Each 16-bit block is then converted 
to a 4-digit hexadecimal number, separated by colons. The resulting representation is called 
colon-hexadecimal. This is in contrast to the 32-bit IPv4 address represented in dotted-decimal 
format, divided along 8-bit boundaries, and then converted to its decimal equivalent, separated 
by periods [MSD200401]. The following example shows a 128-bit IPv6 address in binary form:

0010000111011010000000001101001100000000000000000010111100111011
0000001010101010000000001111111111111110001010001001110001011010

The following example shows this same address divided along 16-bit boundaries:

0010000111011010   0000000011010011   0000000000000000   0010111100111011000000
1010101010   0000000011111111   1111111000101000   1001110001011010

The following example shows each 16-bit block in the address converted to hexadecimal and 
delimited with colons.

21DA:00D3:0000:2F3B:02AA:00FF:FE28:9C5A

IPv6 representation can be further simplifi ed by removing the leading zeros within each 16-bit 
block. However, each block must have at least a single digit. The following example shows the 
address without the leading zeros:

21DA:D3:0:2F3B:2AA:FF:FE28:9C5A
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This Appendix for Chapter 1 provides a basic glossary of IPv6 terms and concepts that are loosely 
based on references [IPV200501] and [MSD200401].
  Address 
Autoconfi guration

The automatic confi guration process for IPv6 addresses in an interface. The process for 
confi guring IP addresses for interfaces in the absence of a stateful address confi guration server, 
such as Dynamic Host Confi guration Protocol version 6 (DHCPv6). 

  Address Maximum 
Valid Time

Time during a unicast address, obtained by means of stateless  autoconfi guration mechanism, 
keeps in valid state. 

  Address Resolution Procedure of link addresses resolution for the next-hop address in a link. In an IPv6 context, the 
process by which a node resolves a neighboring node’s IPv6 address to its link-layer address. 
The resolved link-layer address becomes an entry in a neighbor cache in the node. The link 
layer address is equivalent to ARP in IPv4, and the neighbor cache is equivalent to the Address 
Resolution Protocol (ARP) cache. The neighbor cache displays the    interface identifi er for the 
neighbor cache entry, the neighboring node IPv6 address, the corresponding link-layer address, 
and the state of the neighbor cache entry. 

  Aggregatable Unicast 
Global Address

Also known as global addresses, these addresses are identifi ed by means of the prefi x format 
001 (2000::/3). IPv6 global addresses are equivalent to IPv4 public addresses and they are whole 
routable and reachable in the IPv6 Internet fragment. 

  Anycast Address A unicast address that identifi es several interfaces and is used for the delivery from one to one-
between-several. With an appropriate route, datagrams addressed to an anycast address will be 
deliver to a single interface, the nearest one. 

  AS See Autonomous System.

  Attempt Address Unicast address where uniqueness is no longer checked. 

  Automatic IPv6 Tunnel Automatic creation of tunnels using IPv4 compatible addresses.

  Automatic Tunnel An IPv6 over IPv4 tunnel in which end points are specifi ed by means of the use of tunnels logical 
interfaces, routes, and IPv6 source and destination addresses.

  Autonomous System 
(AS)

A network domain that belongs to the same administrative authority.

  Colon Hexadecimal 
Notation

The notation used to represent IPv6 addresses. The 128 bits address is divided in 8 blocks 
of 16 bits. Each block is represented as an hexadecimal number and moves apart from 
next block by means of colon orthographic sign (:). Inside each block, zeros left placed are 
removed. An example of an IPv6 unicast address represented in hexadecimal notation is 3FFE:
FFFF:2A1D:48C:2AA:3CFF:FE21:81F9.

  Compatibility Addresses IPv6 addresses used when IPv6 traffi c is sent through an IPv4 infrastructure. Some examples are: 
 IPv4 compatible addresses, 6to4 addresses, and ISATAP addresses.
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This Appendix for Chapter 1 provides a basic glossary of IPv6 terms and concepts that are loosely 
based on references [IPV200501] and [MSD200401].
  Compressing Zeros Some types of addresses contain long sequences of zeros. In IPv6 addresses, a contiguous 

sequence of 16-bit blocks set to 0 in the colon-hexadecimal format can be compressed to :: 
(known as double-colon). The following list shows examples of compressing zeros [MSD200401]: 

The link-local address of FE80:0:0:0:2AA:FF:FE9A:4CA2 can be compressed to FE80::2AA:FF:
FE9A:4CA2. 

The multicast address of FF02:0:0:0:0:0:0:2 can be compressed to FF02::2. 

Zero compression can only be used to compress a single contiguous series of 16-bit blocks 
expressed in colon-hexadecimal notation. One cannot use zero compression to include part of a 
16-bit block. For example, one cannot express FF02:30:0:0:0:0:0:5 as FF02:3::5.

Zero compression can be used only once in an address, which enables you to determine the 
number of 0 bits represented by each instance of a double-colon (::). To determine how many 0 
bits are represented by the ::, one can count the number of blocks in the compressed address, 
subtract this number from 8, and then multiply the result by 16. For example, in the address 
FF02::2, there are two blocks (the FF02 block and the 2 block). The number of bits expressed by 
the :: is 96 (96 = (8 - 2) × 16) [MSD200401].

  Correspondent Node A node that communicates with a mobile node that is out of its own network.

  Default Path The route with a ::/0 prefi x. The default route, gathers all destinations and is the route used to 
obtain next destination address when there are no more matching routes.

  Default Routers List A list supported by each device where all routers, from which a no null router lifetime value 
advertisement has been received, appear.

  Destination Cache Table supported by each IPv6 node that maps each destination address (or addresses range) with 
the next router address to which the datagram has to be sent. Moreover it stores the associated 
path MTU.

  Distance Vector A routing protocol mechanism that propagates routing information as network identifi er and its 
distance as hops numbers.

  Domain Names System An storage hierarchical system and its associated protocol to store and recover information about 
names and IP addresses.

  Double Colon Compressing continuous series of 0 blocks, into IPv6 addresses like “::”. For example, 
FF02:0:0:0:0:0:0:2 multicast address is expressed as FF02::2.

  Dual Stack Architecture An IPv6/IPv4 node architecture in which two complete protocols stack implementations exist, one 
for  IPv4 and another one for IPv6, each with its own implementations of the transport layer (TCP 
and UDP).

  Dynamic Host 
Confi guration Protocol 
(DHCP)

A confi guration protocol with “stateful“ state that provides IP addresses and other confi guration 
parameters to connect to an IP network.

  Encapsulating Security 
Payload

An IPv6 extension header and trailer that provides data source authentication, data integrity 
and confi dentiality and a not-reply service for the loading of the datagram encapsulated by the 
header and trailer.

  EUI See Extended Unique Identifi er.

  EUI-64 Address 64 bits link layer address that is used as basis to generate interface identifi ers in IPv6.

  Extended Unique 
Identifi er (EUI)

Link layer address defi ned by the Institute of Electrical and Electronic Engineers (IEEE).

  Extension Headers Headers placed between IPv6 header and higher level protocols headers, and are used to provide 
with additional functionalities to IPv6.
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This Appendix for Chapter 1 provides a basic glossary of IPv6 terms and concepts that are loosely 
based on references [IPV200501] and [MSD200401].
  Flow Datagram series exchanged between a source and a destination that require an special treatment 

at middle routers, and defi ned by a specifi c source and destination  IP address, just as by a fl ow 
label with a non 0 value.

  Format Prefi x High order bits with a fi xed value that defi ne an IPv6 type address.

  Fragment A portion from a message sent by a host into an  IPv6 datagram. Fragments contain a 
fragmentation header.

  Fragmentation Process in which the source device divides the message of an  IPv6 datagram in some number of 
fragments, so all fragments have a properly MTU to its destination.

  Fragmentation Header An IPv6 extension header that contains information needed for reassembly to be used in the 
receiving node.

  Global Address See global unicast aggregatable address.

  Group Identifi er Leftmost 112 bits or leftmost 32 bits (according to RFC 2373 recommendation) of an IPv6 
multicast address, that identifi es a multicast group.

  Higher Level Checksum Calculation of the checksum, realized in ICMPv6, TCP and UDP, that uses the IPv6 pseudo-header.

  Higher Level Protocol Protocol that uses IPv6 as transport and it is placed in the upper layer than IPv6, such as ICMPv6, 
TCP and UDP.

  Hop-By-Hop Option 
Header

An IPv6 extension header that contains options that must be processed by all intermediate 
routers as well as fi nal router.

  Hosts File A text fi le used to contain name-IP address correspondences. In Windows XP or .NET server is 
located at \SystemRoot\System32\Drivers\Etc directory. In Unix devices is located at /etc directory.

  Host-To-Host Tunnel An IPv6 over IPv4 tunnel in which end points are devices.

  Host-To-Router Tunnel An IPv6 over IPv4 tunnel in which the tunnel begins in a host and ends in an IPv6/ IPv4 router.

  ICMPV6 See Internet Control Message Protocol For IPv6. 

  Interface A representation of a physical or logical link of a node to a link. An example of a physical 
interface is a network interface. An example of a logical interface is a tunnel interface.

  Interface Identifi er Last 64 bits of a unicast or anycast IPv6 address.

  Internet Control 
Message Protocol For 
IPv6 (ICMPV6)

Protocol for Internet Control Messages for IPv6. A protocol that provides error messages for 
the routing and delivers IPv6 datagrams and information messages for diagnostics, neighbor 
discovery, multicast receiver discovery, and IPv6 mobility.

  Intra-Site Automatic 
Tunneling Addressing 
Protocol (ISATAP)

A technology of coexistence that provides IPv6 unicast connectivity between devices placed in an 
IPv4 intranetwork. ISATAP obtains an  interface identifi er from the IPv4 address (public or private) 
assigned to the device. This identifi er is used for the establishment of automatic tunnels through 
IPv4 infrastructure.

  IP6.Int The DNS domain created for the IPv6 reverse resolution. The reverse resolution has the purpose 
of fi xing the name of a device by means of its address.

  IPv4 Compatible 
Address

A 0:0:0:0:0:0:w.x.y.z or ::w.x.y.z address, where w.w.y.z is the decimal representation of a public 
IPv4 address. For example, ::131:107:89:42 is an IPv4 compatible address. These addresses are 
used in Automatic IPv6 tunnels.

  IPv4 Node A node that implements IPv4; it can send and receive IPv4 packets. It can be an only IPv4 node or 
a dual IPv4/IPv6 node.

  IPv6 In IPv4 See IPv6 over IPv4 tunnels.

  IPv6 MTU The maximum IP packet size that can be sent over a link.

  IPv6 Node Node that implements IPv6; it can send and receive IPv6 packets. An IPv6 node can be an only 
IPv6 node or a dual IPv6/IPv4 node.
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This Appendix for Chapter 1 provides a basic glossary of IPv6 terms and concepts that are loosely 
based on references [IPV200501] and [MSD200401].
  IPv6 Over IPv4 Tunnel Sending IPv6 packets with an IPv4 header, so IPv6 traffi c can be sent over an IPv4 infrastructure. 

In the IPv4 header, the protocol fi eld value is 41.

  IPv6 Prefi xes The prefi x is the part of the address that indicates the bits that have fi xed values or are the bits 
of the network identifi er. Prefi xes for IPv6 routes and subnet identifi ers are expressed in the same 
way as the classless interdomain routing notation for IPv4. An IPv6 prefi x is written in address/
prefi x-length notation. For example, 21DA:D3::/48 is a route prefi x and 21DA:D3:0:2F3B::/64 
is a subnet prefi x.  IPv4 implementations commonly use a dotted decimal representation of the 
network prefi x known as the subnet mask. A subnet mask is not used in IPv6. Only prefi x-length 
notation is used [MSD200401].

  IPv6 Routing Table Set of routes used to determine next node address and interface in IPv6 traffi c sent by an 
equipment or redirected by a router.

  IPv6/IPv4 Node A node that has IPv4 and IPv6 implementations.

  ISATAP See Intra-Site Automatic Tunneling Addressing Protocol.

  ISATAP Address A |64-bit prefi x|:0:5EFE:w.x.y.z address, where w.x.y.z is a public or private IPv4 address, that is 
allocated to an ISATAP device.

  ISATAP Machine A device to which an ISATAP address is assigned to.

  ISATAP Name The name solved by computers with Windows XP Service Pack 1 or Windows .NET Server 2003 
operative systems to automatically discover the ISATAP router address. Windows XP equipments 
try to resolve the name “_ISATAP”.

  ISATAP Router An IPv6/IPv4 router that answers to ISATAP equipments requests through tunnels and routes 
traffi c between ISATAP equipments and nodes from another ISATAP network or subnetwork.

  Jumbo Payload Option An option in the hop-to-hop options header that shows the size of the jumbogram.

  Jumbogram An  IPv6 packet that has a payload greater than 65,535 bytes. Jumbograms are identifi ed with a 0 
value in the payload length IPv6 header fi eld, and including a Jumbo payload option in the hop-
to-hop options header.

  Lifetime In Preferred 
State

Time during a unicast address, obtained by means of stateless  autoconfi guration mechanism, 
stays in the preferred state. This time is specifi ed by the preferred lifetime fi eld in routers 
advertisement messages prefi x information option.

  Link A communication facility or medium over which nodes can communicate at the link layer, i.e., 
the layer immediately below IPv6. Examples are Ethernets (simple or bridged); PPP links; X.25, 
Frame Relay, or ATM networks; and internet (or higher) layer “tunnels”, such as tunnels over IPv4 
or IPv6 itself.

  Link Maximum 
Transmission Unit 
(MTU)

The MTU is the number of bytes in the greatest IPv6 packet that can be sent through the link. 
Since the frame maximum size includes link layer headers, the link MTU does not equate with 
the link frame maximum size; rather, the link MTU matches the link layer technology payload 
maximum size.

  Link State Routing protocol technology that exchanges routes information, that consists of prefi xes of 
networks connected to a router and its associated cost. Link state information is advertised in 
boot process, just as when changes are detected in the network topology.

  Local Address An IPv6 unicast address that is not reachable in IPv6 Internet. Local addresses include “link-local” 
and “site-local” addresses.

  Local Area Network 
Segment

Link portion that consists of an only medium limited by bridges or layer 2 switches.

  Local Interface Internal interface that allows a node to send packets to itself.

  Local Loop Address IPv6::1 address, assigned to local interface.
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This Appendix for Chapter 1 provides a basic glossary of IPv6 terms and concepts that are loosely 
based on references [IPV200501] and [MSD200401].
  Local Site Address Local address identifi ed by the 1111 1110 11 (FEC0::/10) prefi x. The scope of these addresses is 

local sites (of an organization), without the necessity of a global prefi x. Local site addresses (aka 
site-local addresses) are not accessible from other sites and routers should not direct local site 
traffi c out of such site.

  MAC Address A link layer address of local network typical technologies such as Ethernet, Token Ring and FDDI. 
It is also known as physical address, hardware address, or network adapter address. 

  Machine (Host) A node that cannot send datagrams not created by itself. A machine (device) is both the source 
and destination of IPv6 traffi c, and will discard traffi c that is not specifi cally addressed to it.

  Mapping IPv4 Address A 0:0:0:0:0:FFFF:w.x.y.z or ::FFFF:w.x.y.z address, where w.x.y.z is an IPv4 address. Mapped IPv4 
addresses are used to represent an IPv4-only node in the presence of an IPv6 node.

  Maximum Transfer Unit 
(MTU)

The longest Protocol Data Unit (PDU) that can be sent (unfragmented). Maximum transmission 
units are defi ned at the link layer (frame maximum size) and at the network or Internet layer 
(maximum  IPv6 packet size).

  Maximum-Level 
Aggregation Identifi er

(aka Top-Level Aggregation Identifi er -- TLA ID). 13 bits fi eld inside the global unicast address 
reserved for large organizations or ISP by the IANA, hence it identifi es the addresses range that 
they have delegated.

  Medium Access Control A sublayer of the link layer defi ned by the Institute of Electrical and Electronic Engineers. Its 
functionalities are the creation of frames and the management of the medium sharing (and 
access)

  MTU See Maximum Transmission Unit. 

   Multicast Address An address that identifi es several interfaces and is used to deliver data from one-to-several. By 
means of the multicast routing topology, packets to a multicast address will be delivered to all 
interfaces identifi ed by it.

  Multicast Group Set of equipments listening to a specifi c multicast address.

  Multicast IPv4 Tunnel See 6over4. 

  Name Resolution Procedure to obtain an address from a name. In IPv6, the resolution of names allows obtaining 
addresses from device names or domain names totally qualifi ed (FQDN).

  ND See Neighbors Discovery.

  Neighbor Node connected to the same link.

  Neighbors Cache A cache supported by each IPv6 node that stores the  IP address of its neighbors in the link, its 
corresponding link layer address, and an indication of its accessibility state. Neighbors cache is 
equivalent to ARP cache in IPv4.

  Neighbors Discovery 
(ND)

A set of messages and ICMPv6 processes that fi xes the relations between neighbors nodes. 
Neighbors discovery replaces ARP, ICMP routes discovery, and ICMP redirection messages used in 
 IPv4. It also provides inaccessible neighbor detection.

  Neighbors Discovery 
Options

Neighbors Discovery messages options that show link layer addresses, information about 
prefi xes, MTU, routes, and confi guration information for IPv6 mobility.

  Network Addresses 
Translator

An IPv4 router that translate addresses and ports when sending packets between a network with 
private addresses and Internet.

  Network Prefi x The fi xed part of the address that is used to determine the subnetwork identifi er, the route or the 
addresses range.

  Network Segment See Subnetwork. 

  Next Hop Obtaining Process to obtain address- or next-hop-interface to facilitate sending a packet based on the 
routing table content.
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This Appendix for Chapter 1 provides a basic glossary of IPv6 terms and concepts that are loosely 
based on references [IPV200501] and [MSD200401].
  Next-Level Aggregation 
Identifi er (NLA ID)

24 bits fi eld inside the global unicast aggregatable address that allows the creation of several 
hierarchical levels of addressing in its networks to organize addresses and routing to other ISPs, 
as well as to identify organization sites.

  NLA ID See Next-Level Aggregation Identifi er.

  No-Broadcast Multiple 
Access Link

A link layer technology that supports links with more than two nodes, but without allowing 
the sending of a packet to several destinations (broadcast). For example, X.25, Frame Relay and 
Asynchronous Transfer Mode (ATM).

  Not Specifi ed Address 0:0:0:0:0:0:0:0 (::) address is used to show the absence of any address, equivalent to  IPv4 0.0.0.0 
address. 

  Own Link Home link. In mobile IP, the link in which the mobile node resides in its network. The mobile 
node uses the own link prefi x to create its own address.

  Packet Protocol Data Unit (PDU) at Internet layer. In IPv6, a packet that consists of a header and an IPv6 
payload.

  Parameters Discovery Neighbors Discovery process that allows equipments to know confi guration parameters, 
including link MTU, and the default hops limit for outgoing packets.

  Path Determination 
System

Procedure to select the route from the routing table the datagram will be forwarded through. 
That is, how the next router the datagram will be sent to is selected.

  Path MTU Maximum  IPv6 packet size that can be sent without using fragmentation between a source and a 
destination over an IPv6 network route. The route MTU equates with the smallest link MTU for all 
links in such route.

  Path Vector A routing protocol’s approach that involves the exchange of hops information sequences 
showing the path to follow in a route. For example, BGP-4 exchanges sequences of numbers of 
Autonomous Systems (ASs).

  Path’s MTU Discovery Process relating to the use of Too Big message by means of ICMPv6 to discover the maximum 
IPv6 MTU value in all links between two devices.

  PDU See Protocol Data Unit.

  Point-To-Point Protocol Point-to-point network encapsulation method that provides frame delimiters, protocol 
identifi cation, and integrity services at bit level.

  Prefi xes List Link prefi xes list supported by each host. Each entry defi nes the directly reachable IP addresses 
range, that is, neighbors.

  Prefi x-Length Notation Notation used to represent network prefi xes. It uses the address/prefi x length form; this prefi x 
length is the address’ initial bits number that is employed to defi ne the prefi x.

  Protocol Data Unit 
(PDU)

(aka datagram) The PDU is a fragment of a data sequence that is transmitted through the 
network. Data objects corresponding to a concrete layer in a network architecture consisting of 
layers. During transmission the data unit of the n layer turn into the payload of the n-1 layer (the 
lower layer).

  Pseudo-Header Provisional header that is built to calculate the needed checksum to associate the IPv6 header 
with the charge. IPv6 uses a new pseudo-header format to calculate UDP, TCP and ICMPv6 
checksum.

  Pseudo-Periodic Event that is repeated at intervals of various lengths. For example, the routes advertisement sent 
by an IPv6 router is made at intervals that are calculated between a minimum and a maximum.

  Reassembing Procedure to rebuild the original charge of a datagram from several fragments.

  Redirect Procedure included in the neighbors discovery mechanisms to inform a host about the IPv6 
address of another neighbor that is more appropriate as next hop to a destination.

  Relay Router 6to4 An IPv6/IPv4 router that redirects traffi c directed to 6to4 addresses between 6to4 routers in the 
Internet and IPv6 Internet devices.
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This Appendix for Chapter 1 provides a basic glossary of IPv6 terms and concepts that are loosely 
based on references [IPV200501] and [MSD200401].
  Router Node that can forward datagrams not specifi cally addressed to it. In an IPv6 network, a router is 

used to send advertisements related to its presence and its confi guration information.

  Router Advertisement Neighbor discovery message sent by a router in a pseudo-periodic way or as a router solicitation 
message response. The advertisement includes, at least, information about a prefi x that will 
be used later by the host to calculate its own unicast IPv6 address following the stateless 
mechanism.

  Router’s Cache See Destination Cache. 

  Routers Discovery Neighbors discovery process that allows for discovering of routers connected to a particular link.

  Routing Loop Undesirable situation in a network that causes the traffi c was relayed over a closed loop, so it 
never reaches its destination.

  Scope For IPv6 addresses, the scope is the portion of the network to which the traffi c will be 
propagated to.

  Scope ID The scope ID identifi es a specifi c area within the reachability scope for nonglobal addresses. A 
node identifi es each area of the same scope with a unique scope ID.

  Site Prefi x A 48 bits prefi x used to refer to all site addresses. Site prefi xes are stored in a prefi xes table that 
is used to confi ne traffi c associated to these site prefi xes.

  Site-Level Aggregation 
Identifi er (SLA ID)

16 bits fi eld inside the global unicast address that uses an organization to identify subnetworks 
inside its own network.

  Solicited-Node Address  Multicast address used by nodes during address resolution process. The solicited-node address 
facilitates effi cient querying of network nodes during address resolution. IPv6 uses the Neighbor 
Solicitation message to perform address resolution. In  IPv4, the ARP Request frame is sent to 
the MAC-level broadcast, disturbing all nodes on the network segment regardless of whether a 
node is running IPv4. For IPv6, instead of disturbing all IPv6 nodes on the local link by using the 
link-local scope all-nodes address, the solicited-node multicast address is used as the Neighbor 
Solicitation message destination. The solicited-node multicast address consists of the prefi x 
FF02::1:FF00:0/104 and the last 24-bits of the IPv6 address that is being resolved.

  Static Routing Utilization of routes, introduced by hand, into routers routing tables.

  Subnet Anycast Router 
Address

Anycast address (64 bits:: prefi x) that is allocated to routers interfaces.

  Subnetwork One or more links that use the same 64 bits prefi x in IPv6.

  Subnetwork Associated 
Path

Path where the 64 bits prefi x belongs to a concrete subnetwork.

  Suitable Path Selection The algorithm used by the routes selection procedure to choose the routes from the routing 
table that are nearer to the destination address the packet should be sent.

  TLA ID See Maximum-Level Aggregation Identifi er.

  Top-Level Aggregation 
Identifi er (TLA ID)

See Maximum-Level Aggregation Identifi er.

  Transition Conversion of IPv4-only nodes into dual-stack nodes or IPv6-only nodes.

  Tunnel An IPv6 over IPv4 tunnel, in which end points are specifi ed by manual confi guration.
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This Appendix for Chapter 1 provides a basic glossary of IPv6 terms and concepts that are loosely 
based on references [IPV200501] and [MSD200401].
  Unicast Address An address that identifi es an only interface and allows network layer point-to-point 

communication. It identifi es a single interface within the scope of the unicast address type. The 
following list shows the types of IPv6 addresses: 

Aggregatable global unicast addresses 

“Link-local” addresses

“Site-local” addresses 

Special addresses, including unspecifi ed and loopback addresses 

Compatibility addresses, including 6to4 addresses 

With the appropriate unicast routing topology, packets addressed to a unicast address are 
delivered to a single interface.
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C H A P T E R  2

Considerable interest has been shown during the past quarter century in supporting  Voice over Packet 
(VoP)-based networks. Several packet technologies have been proposed, tested and deployed over the 
years, including  Voice over X.25 (VoX25) networks,  Voice over Frame Relay (VoFR) networks,  Voice over 
Asynchronous Transfer Mode (VoATM) networks,  Voice over IP (VoIP) networks, Voice over Wi-Fi/Hot-
spot networks, and  Voice over Multiprotocol Label Switching (VoMPLS) networks (e.g., see [MIN199801], 
[MIN199802], [MIN200102], [MIN200203], among other references.) Of these, VoIP has seen the largest market 
penetration in recent years, and it has stirred the most interest as a technology to perhaps replace the tradition-
al circuit-switched mechanisms of the public-switched telephone network. Hence, there is keen research and 
commercial interest in VoIP at this time. Issues surrounding VoP/VoIP include the following six major areas:

Voice digitization/compression
Standards in the user plane (information fl ow) and in the control plane 
(call/session signaling/management)
Signaling
Numbering
Applications
Wireless deployment

This chapter provides an overview of these topics. We are not deliberately focusing on IPv6-related issues 
in this chapter; rather, we simply aim at establishing a baseline of the VoP space and supportive technolo-
gies before proceeding with the major topic at hand. Also, note that in Chapter 1 we have positioned the 
discussion (motivation) of IPv6 in part as a solution to scalability limitations of IPv4-based VoIP; hence, the 
discussion here and in the chapters that follow partially takes on the perspective of organizations that may 
have to deal with such scalability considerations, namely, service providers and telecommunication carriers 
(and, also equipment providers to these industries); this approach also applies to large fi rms with 10,000–
50,000 users or more.

2.1 Introduction and Background
There are conceivably several possible motivations for considering a packetized approach to voice, as ad-
vocated by various industry constituencies. Ranking these publicly-stated industry motivations by the order 
that would make the most sense, one has: 

New applications become possible with VoP, thereby generating opportunities for new services and 
new revenues. New applications could include, for example, the following, among others: mobil-
ity, unifi ed messaging, converged-delivery of any kind of information service,  Computer Telephony 
Integration (CTI) applications for  Contact Center, including virtual contact centers and, hosted “IP 
PBX/Centex” services without traditional distance limitations. 

1.
2.

3.
4.
5.
6.

•

Basic VoP/VoIP Concepts
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Cost savings can be achieved by the carrier by using a packetized technology for convergence in 
some or all of the following: the operations budget, the equipment budget, or the transmission bud-
get. These savings can then be passed on to the users.
  Voice still brings in about 80% of the revenues for carriers; the U.S. voice revenues were around 
$200B per year at press time, and the worldwide revenues were around $800B, including mobile 
services1,2. Therefore, voice is a desirable market to optimize (with new technologies) and/or pen-
etrate (the data revenue fi gure being partitioned as 13% corporate and 7% Internet3.)
An elegant new integrated (converged—“  triple play”) architecture becomes possible with a connec-
tionless packet: a new does-it-all network that is a based on a single approach supporting a gamut 
of services.
IP has become ubiquitous in the data arena. It is desirable, therefore (according to proponents), to 
use IP for everything, and IP can be made good enough to support anything and everything.

It appears at face value that new applications have taken somewhat of a back seat during the past few years 
of advocacy, while transfer of market share (from traditional equipment providers to newer equipment 
providers and from traditional carriers to new carriers; for example, Multiple System Operators [MSOs]) 
appears to have been a key driver for proponents. VoP conserves bandwidth, and this has been the second-
ary key focus of the proponents. However, backbone bandwidth has become a near-commodity of late and 
bandwidth conservation is of limited interest in terms of the overall benefi ts that VoP can afford—optical 
transmission links now can carry in the range of Tbps. Time Division Multiplexing (TDM) trunk replace-
ment with    Statistical TDM (STDM) trunks does little to change this revenue picture of the service providers. 
Also, transmission costs tend to represent only 10–15% of the total budget of carriers. Hence, decreasing 
this cost by even 95% has limited impact to the bottom line. After all, we have had more than 125 years to 
optimize voice transport. If VoP only does something to transport, then it will have rather limited success in 
the general market. And the “packet” portion of VoP has very little to do with the bandwidth savings itself: 
that credit must go to the vocoding technology. This compression could well be accomplished without any 
packetization of any kind (IP,   ATM, frame, or    MPLS.)  

Traditionally, there are two business approaches to carrier operations: (1) introduce new technology to 
reduce costs—this is most effective when the technology aims at reducing people’s costs (for example, au-
tomation) and in improving    Operations, Administration, Maintenance, and Provisioning (OAM&P); and, (2) 
introduce new technology to bring about new services and new applications. Although a hybrid strategy that 
pursues both approaches is ideal, if one had to pick only one, then from a macro-economics point-of-view, 
the latter strategy would appear to be better.

In a greenfi eld environment, the planner in a carrier might look at deploying a VoP architecture rather than a 
traditional Class 5 TDM switch for transmission savings and switch cost reduction, when small-to-medium 
switches are needed4. But, in existing environments, the advantages to VoP have to be secured through new 
applications; obviously, at some late stage such deployment may be based on technology pull; however, that 

•

•

•

•

1 Internet, and private lines represented a $100B international market in 2002. The majority of this fi gure, however, is from private line 
services.

2 The 80% fi gure is an often-quoted number. However, actual numbers showed a $900B market in 2002 with about $50B in data and 
Internet (the remainder of the $120B “other” bucket is for private line services). This actually makes the data and Internet fi gure 
about 5.5% (= 50/900).

3 Source: Nortel Networks, Lehman Brothers, Merrill Lynch, Nortel.
4 The cost per line of a traditional switch is in the range of $300–350.

Minoli_Book.indb   50Minoli_Book.indb   50 3/9/2006   6:29:54 PM3/9/2006   6:29:54 PM



Basic VoP/VoIP Concepts

51

is not yet the case today. In recent years, the competitive pendulum has shifted against the formation of new 
(greenfi eld) carriers such as Competitive Local Exchange Carriers (CLECs), Data Local Exchange Carriers 
(DLECs), Rural Local Exchange Carriers (RLECs), Ethernet Local Exchange Carriers (ELECs), and Build-
ing Local Exchange Carriers (BLECs). And, while some pure-play carriers in Asia and elsewhere may in 
fact utilize VoP/softswitch technology, the case is not yet so to any signifi cant extent in North America, with 
only a handful of such pure-play carriers achieving brand name recognition.

Several technical factors that have held back the deployment of VoP/VoIP on a broad scale are (1)    Quality 
of Service (QoS) considerations for packet networks, especially for network-to-network (carrier-to-carrier) 
environments; (2) robust signaling in support of interworking with the embedded PSTN, which is not go-
ing away any time in the foreseeable decade or two; and, (3) security considerations including coexistence 
with typical fi rewall environments (for example, questions may arise if to deploy various network elements 
supporting VoIP in the uncontrolled domain, the controlled domain, the restricted domain, or the secure 
domain—such decision clearly impacts   fi rewall/DMZ architecture considerations—this topic is revisited in 
Chapter 5.)

  MPLS is a relatively new technology that is expected to be utilized in the immediate future for core net-
works, including converged data and voice networks, possibly prior to IPv6, but that remains to be seen in 
the fi nal analysis. The promise of MPLS is to: (1) provide a connection-oriented protocol for Layer 3 IP; 
(2) support the ability to traffi c engineer the network; and, (3) support wire-speed forwarding of protocol 
data units. MPLS enhances the services that can be provided by IP networks, offering Traffi c Engineering 
(TE, that is, specifi ed routes through the network), “guaranteed” QoS, and Virtual Private Networks (VPNs). 
MPLS enjoys certain attributes that, prima facie, make it a better technology than pure IP to support pack-
etized voice applications. Proponents see MPLS as a key development in IP/Internet technologies that will 
assist in adding a number of essential capabilities to today’s best effort packet networks, including traffi c 
engineering capabilities, providing traffi c with different qualitative Classes of Service (CoS), providing 
traffi c with different quantitative QoS and, providing IP-based   VPNs. The improved traffi c management, the 
QoS capabilities, and the expedited packet-forwarding via the label mechanism could offer some techni-
cal advantage to voice. Other “purists” prefer a basic IP approach due to its perceived simplicity and broad 
applicability. However, there are fundamental scalability and end-to-end protocol issues with pre-IPv6 
technologies, as we discussed in Chapter 1. Hence, the longer term solution (2–5 years out) is to plan the use 
of IPv6 architectures.

This chapter covers both VoIP and VoMPLS (we do not cover VoATM or VoFR6). Table 2.1 provides a small 
(far from exhaustive) set of VoIP-related terms [VOV200501].

Table 2.1: Small set of of VoIP-related terms.

Term Defi nition

  Common Open 
Policy Service 
(COPS)

A query and response protocol that can be used to exchange policy information between a policy 
server and its clients. Defi ned in IETF RFC 2748.

  COPS See Common Open Policy Service.

  GDOI See Group Domain of Interpretation Group Keying.

6 The reader may refer to reference [MIN199801] for a treatment of that topic.
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Term Defi nition

  Group Domain 
of Interpretation 
(GDOI) Group 
Keying

Process that provides a means for a group of users or devices to share cryptographic keys, get effi cient 
key updates, and effi cient remove group members. Defi ned in IETF RFC 3547 and tracked by the IETF 
MSEC Working Group.

  Media Gateway 
Control Protocol 
(MGCP)

A protocol used for controlling VoIP Gateways from external call control elements. Described in IETF 
RFC 2705 and tracked by the International Softswitch Consortium (ISC) Device Control Working Group.

  MGCP See Media Gateway Control Protocol.

  RADIUS See Remote Authentication Dial-In User Service.

  Real-Time 
Streaming Protocol 
(RTSP)

An application-level protocol for control over the delivery of data with real-time properties. Described 
in IETF RFC 2326.

  Real-Time Transport 
Protocol (RTP)

A protocol used to carry streaming real-time multimedia data over IP Networks. Defi ned in IETF RFC 
1889.

  Remote 
Authentication 
Dial-In User Service 
(RADIUS)

Protocol used for authentication and authorization, as well as billing information that details the 
service or services being delivered to the end user. Described in IETF RFC 2138 and RFC 2139.

  RTP See Real-Time Transport Protocol.

  RTSP See Real-Time Streaming Protocol.

  Secure Real-Time 
Transport Protocol 
(SRTP)

Secure real-time transport protocol that provides confi dentiality, message authentication, and replay 
protection for Real-time Transport Protocol (RTP).

  Session 
Initiation 
Protocol (SIP)

An application-layer control protocol defi ned by Internet Engineering Task Force (IETF) that can 
establish, modify and terminate multimedia sessions or calls. These multimedia sessions include 
invitations to both unicast and multicast conferences and Internet telephony applications. SIP can be 
used in conjunction with other call setup and signaling protocols, and is originally described in IETF 
RFC 2543 (March 1999), now obsoleted by RFC 3261, RFC 3262, RFC 3263, RFC 3264, and RFC 3265 
– June 2002). IETF SIP Working Group tracks issue.

  SIP See Session Initiation Protocol.

  SRTP See Secure Real-time Transport Protocol.

  Telephony Routing 
over IP (TRIP)

A policy-driven, dynamic routing protocol used for advertising a range of possible telephony 
destinations and their routing attributes. TRIP can serve as the telephony routing protocol for any 
signaling protocol. Described in IETF RFC 2871 and tracked by the IETF IPTEL Working Group.

  TRIP See Telephony Routing over IP.

2.1.1 Carriers’ Voice Networks
Figure 2.1 depicts a boiled down network for a  traditional  Interexchange Carrier (IXC) where VoP would 
need to coexist and support connectivity and information fl ows (note that with the recent mergers and 
acquisitions in the telecom industry, the lines of demarcation between an interexchange carrier and a local 
exchange carrier are blurring considerably; however, nearly all of the equipment in place remains unaffect-
ed). While some believe that one should use IP (or, more specifi cally, packet) for everything, it has always 
been known that  multiplexing in general, and statistical multiplexing in particular, only pay for themselves 
at the transmission level when the cost of the link to be shared is high (e.g., national or international applica-
tions). Therefore, if the main tenet of the VoP industry is that VoP is bandwidth-effi cient, then it will simply 
have an extremely limited ILEC/local service market; the converse would be true if the focus of VoIP were 
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in new services, which also addresses the converged environment rubric. As a further challenge to the VoP 
industry, the cost of long-haul bandwidth is at a historical low. The fact is that engineers designing new tech-
nology must move beyond the dry clinical abstraction offered by packet disciplines, queue management, and 
protocol state machine, and offer the buyers of their gear (the carriers) and the clients of the buyers of their 
gear (the end users) new solutions, not just functionally-equivalent new technology. 

West Mountain Central East

H3

H2

IXC1

IXC1 CCSS7

IXC2

Tandem
Class 5

ILEC A

LATA 1 LATA 2 LATA 3
ILEC B

Note: Cable companies, CLECs, cellular providers, 
and hotspot service providers are not shown for simplicity.

H1

H1: Hierarchical Level 1, etc.

Figure 2.1: Typical traditional IXC network.

Indications are that carriers are expected to deploy VoP when:

it provides major new revenue opportunities over and above the revenue stream the carriers cur-
rently have;
or, it provides major savings in the  OAM&P side of the house. 

A major breakthrough would be the introduction of an entire set of new data-enriched voice applications. 
For example, follow-me/fi nd-me, distributed call centers, dynamic  Interactive Voice Response (IVR), per-
sonal voice mail, unifi ed messaging, advanced presence services, and others.

•

•

Minoli_Book.indb   53Minoli_Book.indb   53 3/9/2006   6:29:55 PM3/9/2006   6:29:55 PM



Chapter 2

54

2.1.2 VoIP in   Cable TV Environments
The cable industry is now expanding its competitive offerings to include business and residential telephone 
services delivered over its fi ber optic infrastructure. Cable-delivered telephone service is a natural extension 
of a network already capable of delivering services and products not possible just a few short years ago. 
Once upgraded to two-way fi ber optics, a cable system can offer telephone service over the same cable line 
that already carries digital video, high-speed Internet, and other advanced services to consumers. Many of 
the nation’s largest    Multiple System Operators (MSOs) (also known as cable TV providers, or simply, cable 
companies) now offer residential and/or commercial phone service based on VoIP. 

According to data from the  National Cable & Telecommunications Association (NCTA), about 73 mil-
lion households had cable service in the U.S. at the beginning of 2002, which represents about 70% of TV 
households; these numbers have continued to increase since then—the industry has enjoyed a good growth 
rate during the past decade or more. NCTA notes that though still a new business, cable telephony is a key 
component of the cable industry’s business strategy in the coming years: with the continued improvements 
in IP telephony, cable-delivered telephone service could evolve into a simple telecommunications “after 
thought” of consumers, rather than a separate, independent service. Number portability also helps this transi-
tion. Delivering telephone service over traditional circuit-switched facilities can be relatively expensive, can 
be limiting in terms of future follow-on services and, can impose certain complexities in the interworking 
of the cable and copper plant. There is a general consensus that VoIP/VoMPLS may be a better approach for 
the cable TV space, particularly for operators just getting into the space. Recent statistics show that a typical 
U.S. household spends about $1,000 a year in telephone service. This opens up the opportunity of another 
$100–150B or so in revenues for the MSOs just in the U.S. A study by RHK Inc. indicated that voice-over-
broadband (cable) was expected to reach about $1B by 2005, a 60% compound annual growth rate. RHK 
foresees incumbent Local Exchange Carriers (ILECs), which have recently all but effectively morphed into 
carriers providing end-to-end services, and MSOs starting to offer bundled services to consumers and small- 
and medium-sized businesses. Anecdotal information shows that around 15% of households in the U.S. have 
replaced a traditional telephony line with another form of access, usually cable TV. Major work in this arena 
is undertaken by Cable Television Laboratories (Cable Labs) and PacketCable. CableLabs, the industry’s 
standards advocacy group, published the spec Data-Over-Cable Service Interface Specifi cation (DOCSIS) 
for the purpose of supporting VoIP, multimedia services, and advanced security. PacketCable is a collabora-
tion initiative between MSOs and VoIP vendors to develop system specs for VoIP-over-cable.

2.2  Voice Digitization and Encoding
This section discusses voice digitization and compression methodologies that are relevant to VoP applica-
tions. Low-bit-rate voice methods, namely, methods that provide voice compression at 8 kbps or less, are 
of specifi c interest to packet network implementations. At a macro level, one needs to collect speech at 
the source, digitize it in a way that is perceptually acceptable (as measured by a technique known as   Mean 
Opinion Score (MOS) ([MOO199701], [KAR198501], [SPO199701], [ITU199201], [STO199301], [ZWI199101]), or 
equivalent, and deliver the speech samples at the remote end with low delay, low   jitter, low   packet loss, and 
low mis-sequencing, while avoiding the creation of echo or other impairments for the speaker. Figure 2.2 
depicts this concept pictorially. One also needs to be able to support a full-feature call model that entails 
user-to-network and network-node   signaling, so that the user can request specifi c services from the network. 
Also, supplementary services, including but not limited to: three-way calling, conferencing, transferring, 
unifi ed messaging, presence indication, instant messaging, centrex/virtual switch, and so forth, need to be 
supported. Finally, interworking with the hundreds of millions of other existing telephones in the world must 
be supported by any VoP system. 
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Figure 2.2: Use of  coders in a VoP application.

2.2.1 Overview of   Speech Encoding Methods
It was the speech encoding advancements of the early 1990s that gave VoP/VoIP a key (but not the only) 
technical “push.” There are two families of techniques used in speech analysis: waveform coding (e.g., see 
[JAY198401]) and vocoding (also called coding) (e.g., see [BEL200001]). Table 2.2 depicts these two techniques 
and some examples of specifi c algorithms. Waveform coding is applicable to traditional voice networks, 
VoATM, and some implementations of VoMPLS; vocoding is applicable to VoIP/cable/cellular applications. 
Waveform coding was developed (at the practical level) in the early 1960s; vocoding was developed (at the 
practical level) in the early 1990s (starting with GSM cellular services), although the research goes back 
more than half a century.

A    lossless7 (also known as    noiseless) coding system is able to reconstruct perfectly the samples of the origi-
nal signal from the coded (compressed) representation; waveform coding schemes are nearly-lossless. On 
the other hand, a coding scheme incapable of perfect reconstruction from the coded representation is called 
lossy. Vocoding schemes are lossy. Lossy schemes offer the advantage of lower bit rates (e.g., less than 1 bit 
per traditional sample) relative to lossless schemes (e.g., eight or more bits per traditional sample). So far, 
however, the PSTN has used lossless methods. 

Table 2.2:   Speech digitization methods and some illustrative examples.

Method Aspect

 Waveform coders: Utilize 
algorithms to produce an output 
that approximates the input 
waveform.

  PCM (Pulse Code Modulation): Standard telephony method for “toll” quality voice. 
Typically used at 64 kbps.

  ADPCM (Adaptive Differential PCM): Adaptive coding for rates of 40-, 32-, 24-, and 16 
kbps. Uses a combination of adaptive quantization and adaptive prediction. 

  Vocoding: Digitize a compact 
description of the voice spectrum in 
several frequency bands, including 
extraction of the pitch component 
of the signal.

  Adaptive subband coding (e.g., see [AKA199601], [AKA199201]): Supports rates of 
16- and 8 kbps. Speech is separated into frequency bands and each is coded using 
different strategies. The strategies are selected to suit properties of hearing and some 
predictive measure of the input spectrum.

  (hybrid) Multipulse linear predictive coding: Support rates of 8- and 4 kbps. A suitable 
number of pulses are utilized to optimize the excitation information for a speech 
segment and to supplement linear prediction of the segments.

  Stochatically-excited Linear Predictive Coding (LPC): Supports rates of 8- to 2 kbps. 
The coder stores a repository of candidate excitations, each a stochastic sequence of 
pulses, and the best is matched.

7 The loss is determined by the quantization process.
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In waveform coding, one attempts to code, transmit, and then reproduce the analog voice time-amplitude 
curve by modeling its physical shape in the amplitude-time domain. The number of bits per second to 
represent the voice with this method is “high”: 64-, 32-, or 16-kbps, depending on the technology. Vocoding 
attempts to reproduce the analog voice curve by performing a  mathematical analysis (spectral transforma-
tion), which “identifi es” abstractly the type of curve at hand; what is transmitted is a small set of parameters 
describing the nature of the curve. The number of bits per second to represent the voice with this method 
is low: 9.6-, 6.3-, 5.3-kbps and even lower, depending on the technology. However, voice quality becomes 
degraded as the digitization rate becomes small(er) than 4.8 kbps. Low bit rates are realized by methods 
that reduce the redundancies in speech, provide adaptive quantization and pitch extraction, and then code 
the processed signal in a perceptually-optimized manner. Quality, bit rate, complexity, and delay are all 
impacted by the processing and coding. Quality is negatively impacted as the bit rate goes down, but this 
effect can be decreased to some extent by adding complexity of processing (at an increased cost, however); 
in turn, processing increases the delay. In general, except for    Linear Predictive Coding (LPC), as the bit rate 
decreases by a binary order of magnitude, the complexity of the vocoder (also known as coders) increases 
by approximately a decimal order of magnitude. At the same time the delay increases and the quality de-
teriorates. Most VoIP applications to date have operated in the 8 kbps range, although higher rates are not 
precluded, particularly for intraenterprise applications.

In spite of the fact that an extensive body of research on vocoding methods has evolved in the past 25 years, 
historically, the technology as noted has not experienced major deployment in the    PSTN. However, with 
use of these techniques in wireless networks and in VoP networks, increased penetration even in the PSTN 
itself is expected in the next few years. If the network planner is going to introduce major new digitization 
and coding systems in an existing network, like the PSTN, they may as well go “all the way” and deploy the 
10-fold compression methods embodied in modern vocoders rather than the 2-to-1 compression of newer 
waveform coding schemes. 

Nyquist theory specifi es that to properly waveform-code an analog signal of bandwidth W with basic     Pulse 
Code Modulation (PCM) techniques, one needs 2W samples per second. For voice, when band-limited to a 
nominal 4,000 Hz bandwidth, one needs 8,000 samples per second. The dynamic range of the signal (and, 
 ultimately, the signal-to-noise ratio) dictates the number of quantizing levels required. For telephonic voice, 
256 levels suffi ce based on psychoacoustic studies conducted in the 1950s and early 1960s; it follows that 
8 bits are needed to uniquely represent these many levels. In turn, this implies than one needs 64,000 bps to 
 encode telephonic human speech in digital form (for the 4,000 Hz spectrum). PCM does not require sophis-
ticated signal processing techniques and related circuitry; hence, it was the fi rst method to be employed, and 
is the prevalent method used today in the telephone plant (PCM was fi rst deployed in the early 1960s). PCM 
provides excellent quality. This is the method used in modern   Compact Disc (CD) music recording technology, 
although the sampling rate is higher and the coding words are longer, to guarantee a frequency response to 
22 kHz. The problem with PCM is that it requires a fairly high bandwidth to represent a voice signal. 

One way to reduce the bit rate in a waveform coding environment is to use differential encoding methods. The 
problem with these voice coding methods, however, is that if the input analog signal varies rapidly between 
samples, the differential technique is not able to represent with suffi cient accuracy the incoming signal. Just 
as in the PCM technique, clipping can occur when the input to the quantizer is too large; in this case, the input 
signal is the change in signal from the previous sample. The resulting distortion is known as slope-overload 
distortion. This issue is addressed by the   Adaptive Differential Pulse Code Modulation (ADPCM) scheme. 
ADPCM provides “toll quality voice with minimal (voice) degradation” at 32 kbps. In ADPCM, the coder can 
be made to adapt to slope overload by increasing the range represented by the 4 bits used per sample. In prin-
ciple, the range implicit in the 4 bits can be increased or decreased to match different situations; this will reduce 
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the quantizing noise for large signals, but will increase noise for normal signals. In practice, the ADPCM cod-
ing device accepts the PCM-coded signal and then applies a special algorithm to reduce the 8-bit samples to 
4-bit words using only 15 quantizing levels. These 4-bit words no longer represent sample amplitudes; instead, 
they contain only enough information to reconstruct the amplitude at the distant end. The adaptive predictor 
predicts the value of the next signal based on the level of the previously sampled signal. A feedback loop en-
sures that voice variations are followed with minimal deviation. The deviation of the predicted value measured 
against the actual signal tends to be small and can be encoded with 4 bits. In the event that successive samples 
vary widely, the algorithm adapts by increasing the range represented by the 4 bits through a slight increase in 
the noise level over normal signals [BEL200001]. Low bit rate voice methods such as ADPCM reduce not only 
the capacity needed to transmit digital voice but also for voiceband data (e.g., fax and dial-up Internet access). 
ADPCM encoding methods can and have been utilized in ATM and frame relay environments; vocoding is now 
used more prevalently in IP-based voice and in cellular networks.

Sophisticated voice coding methods have become available in the past decade due to the evolution of 
VLSI/DSP technology. As noted earlier, coding rates of 32 kbps, 16 kbps, and even “vocoder” methods 
requiring 6,300 bps, 5,300 bps, 4,800 bps, 2,400 bps, and even less, have evolved in recent years, while the 
quality of the synthetized voice has increased considerably. There is interest for pursuing these new coding 
schemes, particularly, in VoP environments, since the implication is that one can increase the voice carrying 
capacity of the network in place, up to ten times without the introduction of new transmission equipment. 
Unfortunately, current switching technology is based on DS0 (64 kbps) channels. And, as a rough fi gure, 
we estimate that there is an embedded base of about $50B of traditional Class 5 switches in North America. 
Given this predicament, a carrier can either: (a) ignore these new coding methods; or, (b) use trunk gateway 
hardware outside the switch to achieve the trunk-level voice compression; or, (c) introduce new switching 
technology that uses these schemes directly. 

Standards for voice digitization/encoding are critical, if one is to be able to interconnect and interwork any 
two telephones in the world. In the International Telecommunications Union – Telecommunications (ITU-T) 
(the sector dedicated to telecommunications), Study Group 15 (SG15) is charged with making recommen-
dations related to speech and video processing. Table 2.3 identifi es the collection of ITU-T standards and 
specifi cations.

Table 2.3:   ITU-T standards related to voice coding.

Coder Description

   G.711 Pulse Code Modulation (PCM) of voice frequencies.  

   G.712 Transmission performance characteristics of pulse code modulation channels. Replaces G.712, G.713, 
G.714, and G.715.

G.713 [Withdrawn] Performance characteristics of PCM channels between two-wire interfaces at voice 
frequencies. The content of this Recommendation is now covered by ITU-T G.712. 

G.714 [Withdrawn] Separate performance characteristics for the encoding and decoding sides of PCM channels 
applicable to four-wire voice-frequency interfaces.  
The content of this Recommendation is now covered by ITU-T G.712. 

G.715 [Withdrawn] Separate performance characteristics for the encoding and decoding side of PCM channels 
applicable to two-wire interfaces.  
The content of this Recommendation is now covered by ITU-T G.712. 
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   G.720 Characterization of low-rate digital voice coder performance with nonvoice signals.

G.721
 

[Withdrawn] 32 kbps Adaptive Differential Pulse Code Modulation (ADPCM).  
The content of this Recommendation is now covered by ITU-T G.726

   G.722 7 kHz audio-coding within 64 kbps. 

   G.722.1 Coding at 24 and 32 kbps for hands-free operation in systems with low frame loss. 

   G.722.2 Wideband coding of speech at around 16 kbps using Adaptive Multirate Wideband (AMR-WB). 

G.723 [Withdrawn] Extensions of Recommendation G.721 adaptive differential pulse code modulation to 24 
and 40 kbps for digital circuit multiplication equipment application.  
The content of 1988 edition of ITU-T G.723 is now covered by ITU-T G.726 

   G.723.1 Dual-rate speech coder for multimedia communications transmitting at 5.3 and 6.3 kbps.

   G.724 Characteristics of a 48-channel low bit rate encoding primary multiplex operating at 1544 kbps. 

   G.725 System aspects for the use of the 7 kHz audio codec within 64 kbps. 

   G.726 40, 32, 24, 16 kbps Adaptive Differential Pulse Code Modulation (ADPCM). 

   G.727 5-, 4-, 3- and 2-bit/sample embedded Adaptive Differential Pulse Code Modulation (ADPCM). 

   G.728 Coding of speech at 16 kbps using low-delay code excited linear prediction.

G.Imp728 Implementors’ Guide for ITU-T Recommendation G.728 (“Coding of speech at 16 kbps using low-delay 
code excited linear prediction”). 

   G.729 Coding of speech at 8 kbps using Conjugate-Structure Algebraic-Code-Excited Linear-Prediction (CS-ACELP).

Table 2.4 depicts some of the key technical facets of the relevant to vocoders that are applicable to VoP 
networks that have emerged in the past decade [RAD200401]. One of the key questions regarding vocoding re-
lates to speech quality. As alluded to earlier, MOS is a popular method to assess subjective quality measures 
(other methods also exist). Figure 2.3 depicts the  MOS of a number of popular vocoder technologies. 

Table 2.4: Coder/vocoder technology at a snapshot.

Coder Description

  G.711 Speech 
Coder 

A-Law/µ-Law Pulse Code Modulation (PCM) coding of speech at 64 kbps. The speech coder is 
implemented as an encoder and decoder with an option to select A-Law/µ-Law and multiple frame sizes 
at compilation/run time. 

  G.722 Speech 
Coder 

Variable-rate wide-band audio coder. The encoder compresses 16 kHz linear-PCM input data to 
48/56/64kbps and decodes into one of three bit rates. G.722 is a mandatory coding scheme for wide-
band audio for videoconferencing. 

  G.723.1 Dual 
Rate Speech 
Coder with 
Annex A 

Encoding 8 kHz sampled speech signals for transmission at a rate of either 6.3 kbps or 5.3 kbps. G.723.1 
provides near toll quality performance under clean channel conditions. Coder operates on 30 ms frames 
with 7.5 ms of look-ahead. The coder offers good speech quality in network impairments such as frame 
loss and bit errors, and is suitable for applications such as voice over frame relay, teleconferencing or 
visual telephony, wireless telephony, and voice logging. Additional bandwidth savings are possible via 
voice activity detection and comfort noise generation. 
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  G.726 ADPCM 
Waveform Coder 

G.726 Adaptive Differential PCM (ADPCM) compresses speech and other audio signal components of 
multimedia. This coder accepts A-law or µ-law PCM speech samples and compresses it at rates of 40, 32-, 
24- or 16- kbps. The G.726 algorithm has been optimized to compress speech to the highest quality. The 
coder is based on adaptive differential waveform quantization and passes fax, Dual-Tone MultiFrequency 
(DTMF) and other telephony tones. The primary applications of this coder are in Digital CIrcuit Multiplex 
Equipment (DCME), satellite telephony and wireless standards such as PACS, DECT and PHP (Japan). 

  G.729 with 
Annex-B CS-
ACELP Voice 
Coder 

Conjugate-Structure Algebraic Code Excited Linear Prediction, encoding 8 kHz sampled speech signals 
for transmission over 8kbps channels. Also includes G.729B implementation for fi xed rate speech 
coders. G.729 encodes 80 sample frames (10 ms) of 16-bit linear PCM data into ten 8-bit code words, 
and provides near toll quality performance under clean channel conditions. Codec operates on 10 ms 
frames with 5 ms of look-ahead, allowing low transmission delays. The coder offers good speech quality 
in network impairments such as frame loss and bit errors, and is suitable for applications such as voice 
over frame relay, teleconferencing or visual telephony, wireless telephony and voice logging. Additional 
bandwidth savings are possible via voice activity detection (silence suppression) (G.729 Annex B). 

  GSM-FR Speech 
Coder

The ITU-T RPE/LTP supports encoding 8 kHz sampled speech signals for transmission at a rate of 13 kbps. 
The encoder compresses linear-PCM narrow band speech input data, and uses Regular Pulse Excitation 
with Long-Term Prediction (RPE-LTP) algorithm. The GSM-FR coder has been optimized to compress 
speech to the highest quality. The primary applications of this coder are in Digital Circuit Multiplex 
Equipment (DCME), satellite telephony and wireless standards such as PACS, DECT and PHP (Japan).
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Figure 2.3:  MOS of various vocoding schemes.
(Courtesy of Radisys Corporation)
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Having examined the issues and opportunities afforded by speech encoding methods in preliminary form, we 
now look at various technologies in more detail.

2.2.1.1   Waveform Coding
Speech coding or speech compression algorithms are used to obtain compact digital representations of 
(wideband) speech (audio) signals for the purpose of effi cient transmission or storage (say, storage in a voice 
mail system). The key objective in coding is to represent the signal with a minimum number of bits while 
achieving transparent signal reproduction, that is, generating output audio that cannot be distinguished from 
the original input, even by a sensitive listener [SPA200001]. Two processes are required to digitize an analog 
signal, as follows:

Sampling: this discretizes the signal in time, and, 
Quantizing: this discretizes the signal in amplitude.

The devices that accomplish speech analysis (digitization) are called codecs (for coder/decoder). Coders 
include    Analog-to-Digital (A/D) converters that typically perform a digitization function, and “analysis 
modules” that further process the speech to reduce its data rate and prepare it for transmission. The reverse 
process uses synthesis modules to decode the signal and Digital-to-Analog (D/A) converters that reconvert 
the signal back to analog format. 

Naturally, the goal of the entire digitizing process is to derive from an analog waveform a digital waveform 
that is a faithful facsimile (at the acoustical perception level) of the original speech. The sampling theorem, 
indicates that if the digital waveform is to represent the analog waveform in useful form, then the sampling 
rate must be at least twice the highest frequency present in the analog signal. Waveform coding methods are 
driven by this theorem. Analog telephonic speech is fi ltered before digitization to remove higher frequencies. 
The human speech spectrum contains frequencies beyond 12,000 Hz, but for telephony applications, higher 
frequencies can be safely fi ltered out. Specifi cally, in traditional telephone networks, the channel bank and 
digital loop carrier equipment in telephone networks is designed to eliminate frequencies above 3.3 kHz8. 
Consequently, analog speech signals are sampled at 8,000 Hz for PCM applications. PCM, as specifi ed in 
the  ITU G.711 recommendation, is currently the most often used digitization in telephony. Today, nearly 
every wireline telephone call in the U.S. is digitized at some point along the way using PCM. 

As noted, sampling used in waveform coding of voice makes an analog waveform discrete in time; quan-
tizing makes the signal discrete in amplitude. This discreteness is a direct consequence of the fact that 
computers are digital devices, where the values that are allowed for variables are discrete. The digitization 
process measures the analog signal at each sample time and produces a digital binary code value represent-
ing the instantaneous amplitude. 

Optimizing speech quality means production of a digital waveform that can be reconverted to analog with 
as small an error as possible. Quantization is the process that maps a continuum of amplitudes into a fi nite 
number of discrete values. This results in a (small) loss of information and the ensuing introduction of noise, 
called  quantization noise or  quantization error. In waveform coding, this loss of information is “small” and 
the results in called (nearly) lossless; vocoding methods discard much more information and are therefore 
called lossy. Signal-to-Noise Ratio (SNR) expressed in decibels (dB) is a measure used to describe voice 
quality. For telephony application, speech coders are designed to have a signal-to-noise ratio above 30 dB 
over most of its range. 

PCM can reproduce any signal to any desired level of quality, and has applications beyond telephony. For 
example, the introduction of the CD in the early 1980s brought to the forefront all of the advantages of 

1.
2.

8  Nominally, the voice band is actually 4 kHz.
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digital audio representation, including high fi delity, dynamic range, and robustness. These advantages, 
however, came at the expense of high data rates. Conventional CD and Digital Audio Tape (DAT) systems 
are typically sampled at either 44.1 or 48 kHz using PCM with a 16-bit sample resolution. This results in 
uncompressed data rates of 705.6/768 kbps for a monaural channel, or 1.41/1.54 Mbps for a stereo pair at 
44.1/48 kHz, respectively, [SPA200001]. Compression techniques other than PCM are now being sought for 
high-fi delity music and have already been deployed in iPods and the like, under MPEG-1, Layer 3 (MP3) 
encoding; MP3 is the audio codec specifi ed in Moving Pictures Expert Group 1 (MPEG-1) that, for a num-
ber of reasons, became the most popular format for digital music as its popularity hit critical mass (at this 
juncture “MP3” is commonly used as shorthand for any type of digital music fi le.)

   Uniform Quantization
In a basic PCM system, input to the quantizer hardware comes in the form of an analog voltage provided by 
the sampler circuit. The simplest approach would be to use a uniform quantization method. Here, the range of 
input voltages is divided into 2n segments, and a unique code word of n bits is associated with each segment. 
The width of each segment is known as the step size. The range, R, of an n-bit quantizer with step size s is:

  R = (s)(2n).

This implies that if the input voltage were to exceed R, clipping would result. To address this issue, logarith-
mic quantization is used.

  Logarithmic Quantization
The goal of logarithmic quantization is to maintain a reasonably constant signal-to-noise ratio over a range 
of analog amplitudes; using this technique the signal-to-noise ratio will not vary with incoming signal 
amplitude. To accomplish this, one quantizes (not the incoming signal), but the log value of the signal, for 
example, for analog values, w, the equation y = h + k log(w) with h and k constants provides such a logarith-
mic function9. Logarithmic quantization is a compression process: it reduces the dynamic range of a signal 
according to a logarithmic function. After compression, a reverse process, exponentiation, is required to 
recover a facsimile of the original; the entire cycle is often referred to as companding (for compressing/ex-
panding) [PEL199301]. In North America, a specifi c logarithmic scheme called µ-Law is used; in Europe a 
similar but not identical approach called A-Law; both methods employ 8-bit logarithmic quantization with 
sixteen regions and sixteen steps per region. 

   Adaptive Quantization
Speech signals contains a signifi cant amount of redundant information. By making use of this fact and by 
removing some of these redundancies through processing, one is able to produce data parameters describing 
the waveform with a lower data rate than otherwise possible, and still be able to make a reasonably faithful 
reconstruction of the original. Speech samples generated at the Nyquist rate are correlated from sample to 
sample (actually they remain moderately correlated over a number of consecutive samples). This implies that 
values of adjacent samples do not differ signifi cantly. Consequently, given some number of past samples, it 
is possible to predict with a degree of accuracy the value of the next sample. 

One can achieve further reductions in voice bit rate in a waveform coding environment by employing analy-
sis algorithms that make use of the technique of dynamically adapting the quantizer step size in response to 
variations in input signal amplitude. The goal is to maintain a quantizer range that is matched to the input 

9 This function is applicable when w > 0. A piecewise-linear approximation to the function can be utilized that is valid both for the 
value zero and for negative values. 
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signal’s dynamic range. This discussion has mainly historical value since VoP systems have generally not 
utilized encoding other than PCM (e.g., VoATM) or vocoding (discussed in the next section)10. 

PCM techniques that adapt step size are referred to as Adaptive PCM (APCM). The technique can be ap-
plied to both uniform and logarithmic (nonuniform) quantizers. There are several adaptation algorithms, but 
all aim at estimating the slowly-varying amplitude of the input signal, while at the same time balancing the 
need to increase step size to attain appropriate range against the worsening signal-to-noise ratio that results 
from larger step sizes. For syllabic companding techniques, the quantization characteristics change at about 
the same rate as syllables occur in speech. Other methods use instantaneous companding. Yet other methods 
calculate signal amplitude statistics over a relatively short group of samples and adjust the step size ac-
cordingly (for example,   feed forward adaptive PCM and   feedback adaptive PCM). Some of these adaptive 
techniques are discussed next. 

In the differential coding technique (also called   linear prediction11), for example ADPCM, rather than cod-
ing the input waveform directly, one codes the difference between that waveform and one generated from 
linear predictions of past quantized samples. At sample time j, this encoder codes e(j), the prediction errors 
at time j, where,

 e(j) =  y(j) – [a1y(n – 1) + a2y(n – 2) + ... + apy(j – p)]

and where y(j) is the input sample and the term in square brackets is a predicted value of the input, based 
on previous values. The terms ai are known as prediction coeffi cients. The output values e(j) have a smaller 
dynamic range than the original signal, hence, they can be coded with fewer bits12.

This method entails linear predictions because, as the preceding equation shows, the error predictions 
involve only fi rst-order (linear) functions of past samples. The prediction coeffi cients ai are selected so as to 
minimize the total squared prediction error, E where,

 E = e2(0) + e2(1)+ ...+e2(n)

and n is the number of samples. Once computed, the coeffi cients are used with all samples until they are 
recalculated. In differential coding, a trade-off can be made by adapting the coeffi cients less frequently in 
response to a slowly changing speech signal. In general, predictor coeffi cients are adapted every 10 to 25 
milliseconds. 

As is the case with adaptive quantization, adaptive prediction is performed with either a feedback or feed-
forward approach. In the case of feedback predictive adaptation, the adaptation is based on calculations 
involving the previous set of n samples; with feed-forward techniques, a buffer is needed to accumulate 
n samples before the coeffi cients can be computed (this, however, introduces a delay, because the sample 
values have to be accumulated) [PEL199301]. Values of n = 4 to n = 10 are used. For n ≥ 4, adaptive predica-
tors achieve signal-to-noise ratios of 3 or 4 dB better than the nonadaptive counterparts, and more than 13 
dB over PCM. 

A basic realization of linear prediction can be found in DPCM coding, where, rather than quantizing 
samples directly, the difference between adjacent samples is quantized. This results in one less bit being 
needed per sample compared to PCM, while maintaining the signal-to-noise ratio. Here, if y(j) is the value 
of a sample at a time j for a PCM waveform, then the DPCM sample at time j is given by e(j), where,

 e(j) =  y(j) – [a1y(n – 1) + a2y(n – 2) + ... + apy(j – p)]

10 Some frame relay implementations of the early 1990s did use ADPCM.
11 Devices that use this technique are referred to as adaptive predictive coders (APC).
12 Alternatively, one can achieve a higher signal-to-noise ratio with the same number of bits.
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and where a1 is a scaling factor, while a2 = a3 = ... = ap = 0; namely, 

 e(j) =  y(j) – a1y(n – 1)

Further gains over PCM and DPCM are obtained by including adaptation (as used in ADPCM). This is done 
either by incorporating adaptive quantization or by adjusting the scale factor (at syllabic rate), or both. 

2.2.1.2  Vocoding (Analysis/Synthesis) in the Frequency Domain
We now shift our attention to vocoding. Advances in VLSI/DSP technology that took place in the late 1980s 
and early 1990s have permitted a wide variety of applications for speech coding, including digital voice 
transmissions over telephone channels. The processing can be done by a digital signal processor or by a gen-
eral-purpose microprocessor, although the former is preferred. Transmission can either be online (real time) 
as in normal telephone conversations, or offl ine, as in storing speech for electronic mail of voice messages or 
automatic announcement devices. Many of the low bit rate voice methods make use of the features of human 
speech, in terms of the properties than can be derived from the vocal track apparatus. The coders typically 
segment input signals into quasistationary frames ranging from 2 to 50 ms in duration. Then, a time-frequency 
analysis section estimates the temporal and spectral components on each frame. Often, the time-frequency 
mapping is matched to the analysis properties of the human auditory system, although this is not always the 
case. Either way, the ultimate objective is to extract from the input audio a set of time-frequency parameters 
that is amenable to quantization and encoding in accordance with a perceptual distortion metric [SPA200001]. 

While, as noted, nearly all the traditional PSTN voice is still carried via waveform methods, specifi cally 
PCM, almost invariably all new applications such as cellular, voice over cable,   VoWi-Fi, enterprise VoIP, and 
end-to-end VoIP (enterprise + pure-play-carrier + enterprise) applications are now vocoder-based.

The human vocal tract is excited by air from the lungs (see Figure 2.4). The excitation source is either 
voiced or unvoiced. In voiced speech, the vocal cords vibrate at a rate called the fundamental frequency; this 
frequency is what we experience as the pitch of a voice. Unvoiced speech is created when the vocal chords 
are held fi rm without vibrations and either the air is aspirated through the vocal tract or is expelled with 
turbulence through a constriction at the glottis, tongue, teeth or lips. 

Speech

Air

Vocal Tract

Vocal Cords

Figure 2.4: Model of human speech apparatus.
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Two techniques play a role in speech processing: 

  Speech analysis is that portion of voice processing that converts speech to digital forms suitable for 
storage on computer systems and transmission on digital (data or telecommunications) networks;
  Speech synthesis is that portion of voice processing that reconverts speech data from a digital form 
to a form suitable for human usage. These functions are essentially the inverse of speech analysis. 

Speech analysis processes are also called digital speech encoding (or coding), and speech synthesis is also 
called speech decoding. The objective of any speech-coding scheme is to produce a string of voice codes of 
minimum data rate, so that a synthesizer can reconstruct an accurate facsimile of the original speech in an 
effective manner, while optimizing the transmission (or storage) medium. Figure 2.5 depicts a generic audio 
encoder [SPA200001]. 

Time/Frequency 
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Analysis 
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To Transmission 
Channel 

Masking 
Thresholds 

a(n) 

Parameters 
Parameters 

Side Info 
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U 
X 

Quantization 
and 

Encoding 
Entropy 
(Lossless) 
Coding 

Figure 2.5:    Generic audio encoder.

The waveform methods discussed earlier relate to time-domain (signal amplitude versus time) representa-
tion of the speech signal. Vocoding looks at the signal in the frequency domain; the spectrum represents the 
frequency distribution of energy present in speech over a period of time. Frequency domain coders attempt 
to produce code of minimum data rate by exploiting the resonant characteristics of the vocal tract. There is a 
lot of information that can be extracted and exploited in the speech spectrum. Different vocoder technologies 
have different designs, as identifi ed in Table 2.5 (just a small set of vocoder technologies are shown in the 
table). 

Table 2.5: Vocal track mechanism for various vocoders.

 Vocoder Vocal Track Mechanism

  Formant vocoder Reproduces the formants; a fi lter for each of the fi rst few formants is include, then all higher formants 
are lumped into one fi nal fi lter.

  Channel vocoder Filters divide the spectrum into a number of bands.

  LPC vocoders (*) Models track based on concatenated acoustic tubes. 

(*) Popular vocoders now commercially deployed are derivatives of LPC.

  Parametric Vocoders
Parametric vocoders model speech production mechanisms. They do so by taking advantage of the slow rate 
of change of the signals originating in the vocal tract, allowing one set of parameters to approximate the 
state over a period up to about 25 ms. Most vocoders aim at characterizing the frequency spectrum and the 
vocal tract excitation source (lungs and vocal chords) with only a small set of parameters. These parameters 
(called a data frame) include:

1.

2.
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about a dozen coeffi cients that defi ne vocal tract resonance characteristics,
a binary parameter specifying whether the excitation source is voiced or unvoiced, 
a value for the   excitation energy and, 
a value for   pitch (during voicing only). 

The vocal tract state is approximated by analyzing the speech waveform every 10–25 milliseconds and cal-
culating a new set of parameters at the end of the period. A sequence of data frames is used remotely (or on 
playback from storage) to control synthesis of a mirror waveform. Because only a handful of parameters are 
transmitted, the voice data rate is low. One of the advantages of vocoders is that they often separate excita-
tion parameters: pitch, gain, and voiced/unvoiced indications are carried individually in the data frame, so 
each of these variables can be modifi ed separately before or during synthesis. Commercial-level vocoder 
data rates range from about 13,000 bps to 1,200 bps, with 8,000 bps being a common rate. The rate is de-
pendent upon the frame rate, the number of parameters in the frame and, upon the accuracy with which each 
parameter is coded [BEL200001]. 

In a typical coder there are excitation sources (voice/unvoiced), loudness controls, and a vocal track fi lter. 
The excitation source for voiced speech consists of a periodic impulse generator and a pulse-shaping circuit. 
The impulse period adjusts to follow the original pitch according to the pitch frequency parameter being fed 
to it from the data frame. The vocal tract fi lter network emulates resonance characteristics of the original 
vocal tract. The synthetic glottal waveform entering this section of the synthesizer is transformed to a speech 
waveform approximating the original [PEL199301]. 

Linear Predictive Coding
  Linear Predictive Coding (LPC) is a parametric vocoding technique that utilizes linear prediction meth-
ods. LPC is one of the most powerful speech analysis techniques, and one of the most useful methods for 
encoding reasonable quality speech at a low bit rate. It provides accurate estimates of speech parameters, 
and is relatively effi cient for computation. The term is applicable to those vocoding schemes that represent 
the excitation source parametrically (as just discussed) and that use a higher-order linear predictor (n > 1). 
LPC analysis enjoys a number of desirable features in the estimation of speech parameters such as spectrum, 
formant frequencies, pitch, and other vocal-tract measures. LPC analysis is conducted as a time-domain 
process. 

LPC coding produces a data frame at a rate of about 40–100 frames per second (lower frame rates produce 
lower-quality speech). As should be clear, the data rate originated by a frame depends on the number of co-
effi cients (e.g., the order of the predictor) and on the accuracy to which each of the parameters is quantized. 
It should be noted that speech synthesized from LPC coders is most sensitive to the fi rst few coeffi cients; 
this, in turn, implies that the coeffi cients need not necessarily all be quantized with the same accuracy. 

The analog model that is solved by LPC is an approximation of the vocal tract (glottis and lips, but no nasal 
cavities) using concatenated acoustic tubes. If the number of cylinders is appropriately selected in the model, 
the frequency domain mathematics of the concatenated tubes-problem solves approximately the vocal tract 
problem. LPC allows one to estimate frequency-domain acoustic tube parameters from the speech wave-
form, as described next. 

The LPC prediction coeffi cients obtained from the time-domain signal can be converted to refl ection coef-
fi cients representing the set of concatenated tubes. This implies that frequency-domain estimations that 
approximately describe the vocal tract can be obtained (with this methodology) from time-domain data using 
linear algebra. Specifi cally, the n prediction coeffi cients of an nth order predictor can be calculated by solv-
ing a system of n linear equations in n unknowns; the n refl ection coeffi cients that are present in equations 
describing resonances in a concatenated acoustic tube on 0.5 * (n – 1) sections, can be calculated from the 

•
•
•
•
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n prediction coeffi cients. Hence,  LPC analysis generates a set of refl ection coeffi cients, excitation energy, 
voice/unvoiced indication bit, and fundamental frequency (if signal is voiced). 

LPC starts with the assumption that the speech signal is produced by a buzzer at the end of a tube. The glot-
tis (the space between the vocal cords) produces the buzz, which is characterized by its intensity (loudness) 
and frequency (pitch). The vocal tract (the throat and mouth) forms the tube, which is characterized by its 
resonances (the formants). LPC analyzes the speech signal by estimating the formants, removing their ef-
fects from the speech signal, and estimating the intensity and frequency of the remaining buzz. The process 
of removing the formants is called inverse fi ltering, and the remaining signal is called the residue. The 
numbers that describe the formants and the residue can be stored or can be transmitted. LPC synthesizes the 
speech signal by reversing the process—use the residue to create a source signal, use the formants to create 
a fi lter (which represents the tube), and run the source through the fi lter, resulting in speech. Because speech 
signals vary with time, this process is done on short sections of the speech signal, which are called frames 
[HOW200401]. 

The basic problem of the LPC system is to determine the formants from the speech signal. The basic solution is 
a difference equation (called a  linear predictor), which expresses each sample of the signal as a linear combina-
tion of previous samples. The coeffi cients of the difference equation (the prediction coeffi cients) characterize 
the formants; hence, the LPC system needs to estimate these coeffi cients. The estimate is done by minimizing 
the mean-square error between the predicted signal and the actual signal. This is a straightforward problem, in 
principle. In practice, it involves: (1) the computation of a matrix of coeffi cient values, and, (2) the solution of 
a set of linear equations. Several methods (for example, autocorrelation, covariance, recursive lattice formula-
tion) can be utilized to assure convergence to a unique solution with effi cient computation. 

It may seem surprising that the signal can be characterized by a simple linear predictor. It turns out that, 
in order for this to work, the tube must not have side branches. For ordinary vowels, the vocal tract is well 
represented by a single tube. However, for nasal sounds, the nose cavity forms a side branch. Theoretically, 
therefore, nasal sounds require a different and more complex algorithm. In practice, this difference is partly 
ignored and partly dealt with during the encoding of the residue [HOW200401]. 

If the predictor coeffi cients are accurate, and everything else works correctly, the speech signal can be in-
verse-fi ltered by the predictor, and the result will be the pure source (buzz). For such a signal, it is fairly easy 
to extract the frequency and amplitude and to encode them. However, some consonants are produced with 
turbulent airfl ow, resulting in a hissy sound (fricatives and stop consonants). Fortunately, the predictor equa-
tion does not care if the sound source is periodic (buzz) or chaotic (hiss). This means that for each frame, the 
LPC encoder must decide if the sound source is buzz or hiss—if buzz, estimate the frequency. In either case, 
estimate the intensity, and encode the information so that the decoder can undo all these steps. 

This methodology is how LPC-10e (LPC-10 enhanced), the algorithm described over a decade ago in Fed-
eral Standard 1015 works. LPC-10e uses one number to represent the frequency of the buzz, and the number 
zero is understood to represent hiss. LPC-10e provides intelligible speech transmission at 2,400 bps13. 2,400 
is not a toll-quality technology, but it does establish a lower target for reasonably-intelligible speech over 
bandwidth-constrained networks (e.g., in some military applications.)  

Some enhancements are needed to improve quality. One reason is that there are speech sounds that are made 
with a combination of buzz and hiss sources (for example, the middle consonant in “azure”). Speech sounds 
like this will not be reproduced accurately by a simple LPC encoder. Another problem is that, inevitably, 
any inaccuracy in the estimation of the formants means that more speech information gets left in the residue. 
The aspects of nasal sounds that do not match the LPC model (as discussed previously, for example), will 
end up in the residue. There are other aspects of the speech sound that does not match the LPC model; side 
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branches introduced by the tongue positions of some consonants, and tracheal (lung) resonances are some 
examples [HOW200401]. 

Because of the issues discussed in the previous paragraph, the residue contains important information about 
how the speech should sound, and LPC synthesis without this information will result in poor quality speech. 
For the best quality results, one could just send the residue signal, and the LPC synthesis would sound fi ne. 
Unfortunately, the motivation for using this technique is to compress the speech signal, and the residue sig-
nal requires just as many bits as the original speech signal, so this would not provide any compression. 

Various attempts have been made to encode the residue signal in an effi cient way, providing better quality 
speech than LPC-10e, mentioned above without excessively increasing the bit rate. The most successful 
methods use a “codebook.” The codebook is a table of typical residue signals, which is setup by the system 
designers. In operation, the analyzer compares the residue to all the entries in the codebook, chooses the 
entry that is the closest match, and just sends the code for that entry. The synthesizer receives this code, 
retrieves the corresponding residue from the codebook, and uses that to excite the formant fi lter. Schemes 
of this kind are called   Code Excited Linear Prediction (CELP), which we cover in more detail below. For 
CELP to work well, the codebook must be big enough to include all the various kinds of residues. But if 
the codebook is too big, it will be time consuming to search through, and will require large codes to specify 
the desired residue. The biggest problem is that such a system would require a different code for every 
frequency of the source (pitch of the voice), which would make the codebook extremely large [RAB197801], 
[CAM199001], [CAM199002], [HOW200401]. 

The problem just identifi ed can be solved by using two small codebooks instead of a very large one. One 
codebook is fi xed by the designers, and contains just enough codes to represent one pitch period of residue. 
The other codebook is adaptive; it starts out empty, and is fi lled in during operation, with copies of the previ-
ous residue delayed by various amounts. Therefore, the adaptive codebook acts like a variable shift register, 
and the amount of delay provides the pitch. This is the CELP algorithm described in Federal Standard 1016. 
It provides reasonable quality, natural sounding speech at 4,800 bps. 

 Code Excited Linear Prediction
This section expands on the description of code excited linear predictive coding as described above. CELP 
synthesizes speech using encoded excitation information to excite an LPC fi lter. This excitation information 
is found by searching though a table of candidate excitation vectors on a frame by frame basis. LPC analysis 
is performed on input speech to determine the LPC fi lter parameters. The analysis includes comparing the 
outputs of the LPC fi lter when it is excited by the various candidate vectors from the table or codebook. The 

13 Federal Standard 1016, Telecommunications: Analog to Digital Conversion of Radio Voice by 4,800 bit/second Code Excited Linear 
Prediction (CELP), FS 1016 (1991)" is a 4,800 bps code excited linear prediction voice coder. LPC10 compression uses Federal 
Standard 1015, it provides intelligible speech transmission at only 2400 bit per second, with a compression ratio more than 26.  
LPC10 compression is sensitive to noise. To get better result, one needs to adjust the microphone input level to avoid overly-loud 
signals, and eliminate background noise that can interfere with the compression process.  The U.S. DoD's Federal-Standard-1015/
NATO-STANAG-4198 based 2,400 bps linear prediction coder (LPC-10) was republished as a Federal Information Processing Stan-
dards Publication 137 (“Analog to Digital Conversion of Voice by 2400 bit/second Linear Predictive Coding,” FIPS Pub 137 (1984)). 
The U.S. Federal Standard 1015 (NATO STANAG 4198) is described in: Thomas E. Tremain, "The Government Standard Linear 
Predictive Coding Algorithm: LPC-10," Speech Technology Magazine, April 1982, p. 40–49. The voicing classifi er used in the 
enhanced LPC-10 (LPC-10e) is described in: Campbell, Joseph P., Jr. and T. E. Tremain, "Voiced/Unvoiced Classifi cation of Speech 
with Applications to the U.S. Government LPC-10E Algorithm," Proceedings of the IEEE International Conference on Acoustics, 
Speech, and Signal Processing, 1986, p. 473–6. The following article describes the FS 1016 4.8-kbps CELP coder: Campbell, Joseph 
P. Jr., Thomas E. Tremain and Vanoy C. Welch, "The Proposed Federal Standard 1016 4800 bps Voice Coder: CELP," Speech Tech-
nology Magazine, April/May 1990, p. 58–64.
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best candidate is chosen based on how well its corresponding synthesized output matches the input speech 
frame. After the best match has been found, information specifying the best codebook entry and the fi lter are 
transmitted to the speech synthesizer. The speech synthesizer has the same codebook and accesses the ap-
propriate entry in that codebook, using it to excite the same LPC fi lter to reproduce the original input speech 
frame [USP199401]. 

The codebook is made up of vectors whose components are consecutive excitation samples. Each vector 
contains the same number of excitation samples as there are speech samples in a frame. In typical CELP 
coding techniques (see Figure 2.6 [USP199401]), each set of excitation samples in the codebook must be used 
to excite the LPC fi lter and the excitation results must be compared using an error criterion. Normally, the 
error criterion used determines the sum of the squared differences between the original and the synthesized 
speech samples resulting from the excitation information for each speech frame. These calculations involve 
the convolution of each excitation frame stored in the codebook with the perceptual weighting impulse 
response. Calculations are performed by using vector and matrix operations of the excitation frame and the 
perceptual weighting impulse response [USP199401]. 
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Figure 2.6: A diagram of a   CELP vocoder.

A large number of computations must be performed as the initial versions of CELP required approximately 
500 million multiply-add operations per second for a 4.8 kbps voice encoder. In addition, the search of the 
stochastic codebook for the best entry is computationally complex. The search process is the main source 
of the high computational complexity. Since the original appearance of CELP coders, the goal has been to 
reduce the computational complexity of the codebook search so that the number of instructions to be pro-
cessed can be handled by inexpensive digital signal processing chips. Newer, low-complexity CELP speech 
coders:

accurately and effi ciently digitally code human speech using a CELP speech processor; 
optimize processing of a speech residual in the CELP speech processor using an algebraic, deter-
ministic codebook; 

•
•
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substantially reduce the computational complexity of processing the speech residual in the CELP 
speech processor through use of the codebook; 
construct the codebook by uniformly distributing a number of vectors over a multidimensional 
sphere.

 Low-complexity CELP speech processors receive a digital speech input representative of human speech 
(Figure 2.7 [USP199401]) and performs linear predictive code analysis and perceptual weighting fi ltering 
to produce short- and long-term speech information. It uses an organized, nonoverlapping, deterministic 
algebraic codebook containing a predetermined number of vectors, uniformly distributed over a multidi-
mensional sphere to generate a remaining speech residual. The short- and long-term speech information 
and remaining speech residual are combinable to form a quality reproduction of the digital speech input 
[USP199401]. 
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Figure 2.7: A diagram of the   multistage extraction of information from the input speech frame signal.

The codebook is constructed by uniformly distributing a number of vectors over a multidimensional sphere. 
This is accomplished by constructing ternary valued vectors (where each component has the value –1, 0, or 
+1), having 80% of their components with value zero, and fi xed nonzero positions. The fi xed position of the 
nonzero elements is uniquely identifi able with this coder in comparison with other schemes [USP199401].

2.2.2 Technology and  Standards for Low Bit Rate Vocoding Methods
As noted in the previous sections, during the past quarter-century, there has been a signifi cant level of 
research and development in the area of vocoder technology and compressed speech. During the early- to-
mid-1990s, the ITU-T (specifi cally, SG14 and SG15) standardized several vocoders that are applicable to 
low bit rate multimedia communications in general, and to VoP in intranets, Internet, and private-label IP 
networks in particular. Standardization is critical for interoperability and assurance of ubiquitous end-to-end 
connectivity. This standardization provides end-to-end compatibility at the physical level; the theme of this 
text, however, is total end-to-end compatibility—this requires compatibility at any number of layers includ-
ing the network layer. Otherwise if the protocols are not directly compatible, an internetworking function is 
required and unfortunately this adds cost and complexity.

The standards developed in the early- to mid-1990s are ITU-T G.728, G.729, G.729A, and G.723.1. For 
some applications, the dominant factor is cost; for other applications, quality is critical. This is part of the 
reason why several standards have evolved in the recent past. However, to be ultimately successful, VoP will 
have to narrow down to one choice (or a small set of choices) so that anyone can call anyone else (as we do 

•

•
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today with modems; or, with another example, with traditional TDM telephone instruments14), without wor-
rying what technology the destination party may be using. 

Corporate enterprise networks and intranets are often congested. Hence, for voice over IP take off, it is nec-
essary to trade-off high computational power required for compressing speech down to the lowest possible 
rates, in order to to keep congestion low; however, one needs to do this without compromising the delay 
budget, especially for softphones that make use of desktop/PC’s own computation power. Most planners 
have come to realize that a nontrivial amount of overhaul is needed for the intranets (and also legacy car-
riers’ networks) to actually support VoIP (for example, QoS, power over Ethernet, architecture/number of 
hops, architecture/capacity, and so on.)

The vocoders discussed in the rest of this chapter require between 10 and 20   Millions of Instructions Per 
Second (MIPS). See Table 2.6 for a sample of processors’ computing power (vocoders are typically imple-
mented in digital signal processing chips, but the table and fi gure provide an intuitive sense of the required 
computing power). Note that a gateway that transcodes multiple speech systems would require the sum total 
of the MIPS (e.g., a gateway supporting 25 simultaneous users would need about 500 MIPS).

Table 2.6: MIPS of various systems example.

MC 68000 (8 MHz, 68,000 transistors) 1 MIPS

StrongARM (Newton MessagePad 2100) (2.5 million transistors) 185 MIPS

SGI Indy-R4400 (2.3 million transistors) 250 MIPS

PowerPC 604e (300 MHz) (5 million transistors) 500 MIPS

PowerPC G3 (750/300 MHz) (6.4 million transistors) 750 MIPS

Pentium II (7.5 million transistors) 500 MIPS

SGI Octane R10000 (6.8 million transistors) 800 MIPS

This discussion focuses principally on G.729, G.729A, and G.723.1; G.728’s data rate (16 kbps) may be too 
high for (enterprise) VoP applications (although it would not necessarily be so for carrier applications). ITU-
T G.729 is an 8 kbps  Conjugate-Structure Algebraic Code Excited Linear Prediction (CS-ACELP) speech 
algorithm providing “good” speech quality. G.729 was originally designed for wireless environments, but 
it is applicable to IP/multimedia communications as well. Annex A of Rec. G.729 (also called G.729A) 
describes a reduced-complexity version of the algorithm that has been designed explicitly for integrated 
voice and data applications that are prevalent in Small Offi ce/Home Offi ce (SoHo) low bit rate multimedia 
communications. These vocoders use the same bitstream format and can interoperate with one another15. 
The basic concept of CELP was discussed in generality earlier in the chapter. Additional details are provided 
herewith. Figure 2.8 shows at a very high level the operation of a (  G.729) CELP coder. 

14 Unfortunately (by design), the phone behind the PBX of vendor X usually does not work with the PBX of vendor Y—hopefully VoIP 
in general, and SIP in particular, will alleviate this issue.

15 A signal analyzed with the G.729A coder can be reconstructed with the G.729 decoder, and vice versa. The major complexity 
reduction in G.729A is obtained by simplifying the codebook search for both the fi xed and adaptive codebooks. By doing this, the 
complexity is reduced by nearly 50%, at the expense of a small degradation in performance.
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Figure 2.8: Block diagram of conceptual   CELP synthesis model.

2.2.2.1 Overview
As noted earlier, the design goal of vocoders is to reduce the bit rate of speech for transmission or storage, 
while maintaining a quality level acceptable for the application at hand. On intranets and the Internet, voice 
applications may be standalone or multimedia-based. Since multimedia implies the presence of a number of 
media, speech coding for multimedia applications implies that the speech bitstream shares the communica-
tion link with other signals. 

In principle, the use of a uniquely-specifi ed vocoder might be desirable. Unfortunately, short-term local 
optimization considerations have lead developers to the conclusion that it is more economical to tailor the 
vocoder to each application. Consequently, a number of vocoders were standardized during the mid 1990s. 
Specifi cally, three “international” standards (  ITU-G.729,   G.729A, and   G.723.1), and three regional stan-
dards (enhanced full-rate vocoders for North American (IS-54 operating at 8 kbps) and European (GSM 
RPE-LTP operating at 13 kbps) mobile systems have emerged. As a consequence of this over-abundance of 
standards, making an appropriate choice can be challenging. Vocoder attributes can be used to make trade-
off analysis during the vocoder selection process that the developer of carrier, intranet or Internet multimedia 
or telephony application needs to undertake. 

  Vocoder Attributes
Vocoder speech quality is a function of bit rate, complexity, and processing delay. Developers of carrier, 
intranet, or Internet telephony products must review all these attributes. There usually is an interdependence 
between all these attributes and that they may have to be traded off against each other. For example, low 
bit-rate vocoders tend to have more delay than higher bit-rate vocoders. Low bit rate vocoders also require 
higher VLSI complexity to implement. As might be expected, often low bit-rate vocoders have lower speech 
quality than the higher bit-rate vocoders16. 

   Bit Rate
Bandwidth effi ciency is always at the top of the list for design engineers. Their thinking is that since the 
vocoder is sharing the access communications channel or the likely-overloaded enterprise network/Inter-
net with other information streams, the peak bit rate should be as low as possible. Bandwidth limitations 
may not be an issue for carrier networks that are designed from the bottom up to support VoP, VoMPLS, 
or VoIPv6. Today, most vocoders operate at a fi xed-bit rate regardless of the input signal characteristics; 

16 Additional factors that infl uence the selection of a speech vocoder are availability, licensing conditions, or the way the stan-
dard is specifi ed (some standards are only described as an algorithmic description, while others are defi ned by bit-exact code) 
[COX199601].
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however, the goal would be to make the vocoder variable-rate. For simultaneous voice and data applications, 
a compromise is to create a silence compression mechanism (see Table 2.7) as part of the coding standard. 
A common solution is to use a fi xed rate for active speech and a low rate for background noise [COX199601]. 
The performance of the silence compression mechanism is critical to speech quality; if speech is declared 
too often, the gains of silence compression are not realized. The challenge is that for (loud) background 
noises, it may be diffi cult to distinguish between speech and noise. Another problem is that if the silence 
compression mechanism fails to recognize the onset of speech, the beginning of the speech will be cut off; 
this front-end clipping signifi cantly impairs the intelligibility of the coded speech. 

Table 2.7:   Silence compression algorithms.

  Voice Activity Detector (VAD) Determines if the input signal is speech or background noise. If the signal is 
declared speech, it is coded  at the full fi xed bit rate; if the signal ids declared 
noise, it is coded at a lower bit rate. As appropriate, no bits are transmitted.

  Comfort Noise Generation (CNG) Mechanism invoked at the receiver end to reconstruct the main characteristic 
of the background noise.

The comfort noise generation mechanism must be designed in such a way that the encoder and decoder 
remain synchronized, even when there are no bits transmitted during some interval. This allows for smooth 
transitions between active and nonactive speech segments. 

  Delay
The delay of a speech coding system usually consists of three major components:

 Frame delay
  Speech processing delay
  Bridging delay

Typically. low bit rate vocoders process a frame of speech data at a time, so that the speech parameters can 
be updated and transmitted for every frame. Hence, before the speech can be analyzed it is necessary to 
buffer a frame’s worth of speech samples. The resulting delay is called   algorithmic delay. It is sometimes 
necessary to analyze the signal beyond the frame boundary (this is referred to as   look-ahead); here, ad-
ditional speech samples need to be buffered, with additional concomitant delay. Note that this is the only 
implementation-independent delay (other delay components depend on the specifi c implementation; for 
example, how powerful is the processor used to run the algorithm, the kind of RAM used, etc.). Algorithmic 
delays are unavoidable, therefore, they need to be considered as part of the delay budget by the planner. 

The second major component of the delay originates from the processing time it takes the encoder to ana-
lyze the speech and the processing time required by the decoder to reconstruct the speech. This processing 
delay depends on the speed of the hardware used to implement the vocoder. The combined algorithmic and 
processing delays is called the   one-way system delay. The maximum tolerable value for the one-way system 
delay is 400 ms, if there are no echoes, but for ease and effi ciency of communication it is preferable to have 
the one-way delay below 200 ms. If there are echoes, the tolerable one-way delay is 20–25 ms; therefore, the 
use of echo cancellation is often necessary. 

In applications such as teleconferencing, it may be necessary to bridge several callers using a  Multipoint 
Control Unit (MCU) to allow each person to communicate with the others. This requires decoding each bit-
stream, summing the decoded signals, and then re-encoding the combined signal. This process doubles the 
delay and at the same time it reduces the speech quality because of the multiple (tandem) encodings. Given 

1.
2.
3.
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the previous observation, a bridged system can tolerate a maximum one-way delay of 100 ms because the 
bridging will result in the doubling of the one-way system delay to 200 ms. 

 Algorithm’s Complexity
As noted earlier, vocoders are often implemented on  DSP hardware. Complexity can be measured in terms 
of computing speed in MIPS, Random Access Memory (RAM), and Read-Only Memory (ROM). Complex-
ity determines cost; hence, in selecting a vocoder for an application, the developer must make an appropriate 
choice. When the vocoder shares a processor (with other applications) the developer must decide how much 
of these resources to allocate to the vocoder. Vocoders utilizing less than 15 MIPS are considered as hav-
ing low-complexity; those using 30 MIPS or more are considered high-complexity. As discussed, increased 
complexity results in higher costs and greater power usage. Power usage is an important consideration in 
portable applications, since greater power usage implies reduced time between battery recharges or using 
larger batteries, which in turn means more expense and weight. Figure 2.9 depicts some additional complex-
ity measures of these algorithms [RAD200401].

For the corporate/institutional planner, the vocoder technology is generally defi ned by the type of equipment 
and/or vendor that is selected for the system. In some instances (for example, softphones), it may be possible 
to set the vocoder methods via a menu choice.

Algorithm 

G.711 

G.722 

G.723.1 

G.726 

G.729 with 
Annex B 

G.729 A 

GSM-FR 

Data Rate  

64 Kbps 

48/56/64 Kbps 

6.3 Kbps (high rate) 
5.3 Kbps (low rate) 

16/24/32/40 Kbps 

8 Kbps 

8 Kbps 
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Program  
Memory 
(Kbytes) 

0.5 
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127 

32 
 

Processor  
Loading 
(MCPS) 

0.07 

4.1 

8.5 

7.5 (for 2 
channels) 

13.6 

7.3 

2.8 

Data Memory 
(Kbytes) 
 
1 

 
Tables: 1.61 
Variables: 0.19 
 
Tables: 19.4 
Variables: 2.3 
 
Tables: 0.14  
Variables: 0.512 
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Variables: 8 
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Variables: 7.41 
 
 
2 

Courtesy: Radisys Corporation 

Figure 2.9:  Measures of complexity for various vocoders.

 Quality
In terms of quality, the measure used in comparisons is how well the speech sounds for ideal conditions, 
namely clean speech, no transmission errors, and only one encoding (note, however, that in the real world 
these ideal conditions are often not met because there could be large amounts of background noise such 
as street noise, offi ce noise, air conditioning noise, etc.). Table 2.8 shows the quality for the major coding 
schemes being utilized in voice over data networks. 
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Table 2.8:  Quality of coding schemes.

Algorithm G.723.1 G.729
G.729A

G.728 G.726
G.727

G.711

Rate (bps) 5.3–6.3 8 16 32 64

Quality Good Good Good Good Good

Complexity Highest High Lower Low Lowest

How well the vocoder performs under adverse conditions (e.g., what happens when there are channel errors 
or the loss of entire frames; how good does the vocoder sound when the speech is encoded and decoded in 
tandem, as is the case in a bridging application; how well does it sound when transcoding with another stan-
dard vocoder; how does it sound for a variety of languages) is the question that the Standards Bodies (e.g., 
ITU) try to answer during the testing phase of the standards drafting and generation process. The accepted 
measure of quality is MOS, which we introduced earlier in the chapter. With MOS, the score of multiple 
listeners are averaged to obtain a single fi gure-of-merit. Table 2.9 summarizes some of the key parameters 
that have been discussed in this section.

Table 2.9: Vocoder details.

Algorithm Technology
Bit Rate 
(kbps) MIPS

Compression 
delay (ms) Framing Size MOS

G.711 PCM 64 .34 0.75 0.125 4.1

G.726 ADPCM 32 13 1 0.125 3.85

G.728 LD-CELP 16 33 3–5 0.625 3.61

G.729 CS-ACELP 8 20 10 10 3.92

G.729a CS-ACELP 8 10.5 10 10 3.9

G.723.1 MPMLQ 6.3 16 30 30 3.9

G.723.1 ACELP 5.3 16 30 30 3.8

 Linear Prediction Analysis By Synthesis Coding

Basic Mechanisms
The ITU-T Recommendations G.723.1, G.728, and G.729 belong to a class of   Linear Prediction Analysis-
by-Synthesis (LPAS) vocoders. Code-excited linear predictive vocoders are the most common realization of 
the LPAS technique. 

The decoded speech is produced by fi ltering the signal produced by the excitation generator through both 
a Long-Term (LT) predictor synthesis fi lter and a Short-Term (ST) predictor synthesis fi lter. The excita-
tion signal is found by minimizing the mean-squared error signal (the difference between the original and 
decoded signal) over a block of samples17. It is weighted by fi ltering it through an appropriate fi lter. Both ST 

17 That is, the vocoder parameters are selected in such a manner that the error energy between the reference and reconstructed signal is 
minimized.
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and LT predictors are adapted over time. Since the encoder analysis procedure includes the decoder synthe-
sis procedure, the description of the encoder also defi nes the decoder. 

The ST synthesis fi lter models the short-term correlations in the speech signal. This is an all-pole fi lter with 
an order between 8 and 16. The predictor coeffi cients of the short-term predictor are adapted in time, with 
rates varying from 30 to as high as 400 times per second. The LT predictor fi lter models the long-term corre-
lations in the speech signal. Its parameters are a delay and a gain coeffi cient. For periodic signals, the delay 
corresponds to the pitch period (or possibly an integral number of pitch periods); for nonperiodic signals, the 
delay is random. Typically, the long-term predictor coeffi cients are adapted at rates varying from 100 to 200 
times/s [COX199601]. 

A frequently-used alternative for the pitch fi lter is the adaptive codebook (this was briefl y described in the 
earlier section). The LT synthesis fi lter is replaced by a codebook that contains the previous excitation at 
different delays. These vectors are searched, and the one that provides the best match is selected. To simplify 
the determination of the excitation for delays smaller than the length of the excitation frames, an optimal 
scaling factor can be determined for the selected vector. To achieve a low bit rate, the average number of bits 
per sample for each frame of excitation samples must be kept small. 

The   multipulse excitation vocoder represents the excitation as a sequence of pulses located at nonuniformly 
spaced intervals. The excitation analysis procedure determines both amplitudes and positions of the pulses. 
Finding these parameters all at once is a diffi cult problem and simpler procedures, such as determining loca-
tions and amplitudes one pulse at a time are typically used. The number of pulses required for an acceptable 
speech quality varies from four to six pulses every 5 milliseconds. For each pulse, both amplitude and loca-
tion have to be transmitted, requiring about 7 or 8 bits per pulse [COX199601]. 

 CELP vocoders approach the issue of reducing the number of bits per sample as follows: both encoder and 
decoder store the same collection of C possible sequences of length L in a codebook, and the excitation for 
each frame is described by the index to an appropriate vector in the codebook. This index is typically found 
by an exhaustive search of the codebook vectors and identifying the one that produces the smallest error 
between the original and decoded signals. To simplify the search procedure, many implementations use a 
gain-shape codebook where the gain is searched and quantized separately. The index requires (log2C)/L bits/
sample, typically 0.2–2 bits/sample, and the gain requires 2 to 5 bits for each codebook vector.  

ACELP introduces further simplifi cations by populating the codebook vectors with a multipulse structure: 
by using only a few nonzero unit pulses in each codebook vector, the search procedure can be sped up. The 
partitioning of the excitation space is known as an algebraic codebook; hence, the name of the vocoder. 

  Error Weighting Filter
The approach described above of minimizing a mean-squared error results in a quantization noise that has 
equal energy across the spectrum of the input signal. However, by making use of properties of the human 
auditory system, the vocoder designer can focus on reducing the perceived amount of noise. It has been 
found that greater amounts of quantization noise are undetectable in the frequency bands where the speech 
signal has high energy. Namely, the designer wants to shape the noise as a function of the spectral peaks in 
the speech signal. To put this masking effect to work in the vocoder design, the quantization noise has to be 
properly distributed among different frequency bands. This can be achieved by minimizing a weighted error 
from the short-term predictor fi lter. 

  Adaptive Postfi lter
The noise in speech caused by the quantization of the excitation signal remains an area of vocoder design 
improvement (in particular, in the low-energy frequency regions, the noise can dominate the speech signal). 
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The perceived noise can be further reduced using a post-processing technique called postfi ltering after re-
construction by the decoder. This operation trades-off spectral distortion in the speech versus suppression of 
the quantization noise, by emphasizing the spectral peaks and attenuating the spectral valleys. The postfi lter 
is generally implemented as a combination ST/LT fi lter. The ST postfi lter modifi es the spectral envelope, 
it being based on the transmitted ST predictor coeffi cients (it can also be derived from the reconstructed 
signal). The parameters for the LT postfi lter are either derived from the transmitted LT predictor coeffi cients 
or computed from the reconstructed speech [COX199601]. 

2.2.2.2 Key Coders
  ITU G.729   CS-ACELP (Conjugate-Structure Algebraic-Code-Excited Linear-Prediction) standard (pub-
lished in 1995) is a speech coding and decoding standard that provides 4 kHz speech bandwidth (telephone 
bandwidth) at a bit rate of 8 kbps. This coder is well-suited for telecommunications networks in which 
toll-quality speech is a requirement, and where total communications link delay and the ability to operate in 
noisy environments (possibly through several tandem encode/decode combinations) are important factors 
[ATL200401]. G.729 encodes 80 sample frames (10 ms) of 16-bit linear PCM data into ten 8-bit code words. 
G.729 provides near toll quality performance under clean channel conditions. The G.729 codec operates 
on 10 ms frames with 5 ms of look-ahead, allowing low transmission delays. The coder offers good speech 
quality in network impairments such as frame loss and bit errors, and is suitable for applications such as 
voice over frame relay, teleconferencing or visual telephony, wireless telephony and voice logging. Ad-
ditional bandwidth savings are possible via voice activity detection (G.729 Annex B). The full CS-ACELP 
algorithm implementation runs on a single DSP and has quality similar to the ITU G.728 16 kbps coding 
standard. A good implementation is expected to pass all the fl oating-point tests provided by the ITU for 
algorithm verifi cation [ASP200401]. The standard specifi es a CELP that uses an algebraic codebook to code 
the excitation signal. The coder operates on speech frames of 10 msec (80 samples at an 8 kHz sample rate), 
computes the long-term predictor coeffi cients, and operates in an analysis-by-synthesis loop to fi nd the exci-
tation vector that minimizes the perceptually weighted error signal.

ITU G.728    low-delay code-excited linear prediction vocoder standard (published in 1992) is a 16 kbps 
algorithm for coding telephone-bandwidth speech for universal applications using low-delay code-excited 
linear prediction. This coder is well-suited to a wide range of applications, including both voice storage and 
voice communications. It is ideally suited for telecommunications networks in which toll-quality speech is 
a requirement and total communications link delay is an important factor [ASP200401]. In order to attain high 
speech quality at medium rates, it is necessary to increase coding gain by making some use of model-based 
coding. This generally involves relatively high delays of the order of 40–100 ms due to the block-based 
operation of most model-based coders. The G.728 coding algorithm is based on a standard analysis-by-
synthesis CELP coding technique. However, several modifi cations are incorporated by vendors to meet the 
needs of low-delay high-quality speech coding. G.728 uses short excitation vectors (fi ve samples, or 0.625 
ms) and backward-adaptive linear predictors. The algorithmic delay of the resulting coder is 0.625 ms, 
resulting in an achievable end-to-end delay of less than 2 ms. The G.728 standard was designed to provide 
speech quality equivalent to or better than that of the G.721 32 kbps ADPCM international standard, even af-
ter three tandem connections. The G.728 coder was also designed to behave well in the presence of multiple 
speakers and background noise, and to be capable of handling nonspeech signals such as DTMF tones and 
voice-band modem signals at rates of up to 2,400 bps (if perceptual weighting and postfi ltering are disabled). 
Techniques such as bandwidth expansion of the LPC fi lter coeffi cients and codebook structuring have been 
incorporated into the standard to improve resistance to moderate channel error conditions. The G.728 coder 
achieved a  MOS score of 4.0.
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ITU G.726 is a speech coding and decoding standard that provides 4 kHz speech bandwidth switchable 
at 40-, 32-, 24-, or 16-kbps. We discussed this standard earlier in the chapter in terms of its components 
and operation. The full algorithm implementation runs on a single DSP. Again, a good implementation is 
expected to pass all digital test sequences provided by the ITU for algorithm verifi cation [ASP200401]. The 
G.726 standard specifi es an ADPCM system for coding and decoding samples. The overall compression 
ratio is 2.8:1, 3.5:1, 4.67:1, or 7:1 for 14-bit linear data sampled at 8 kHz and 1.6:1, 2:1, 2.67:1, or 4:1 for 8-
bit companded data sampled at 8 kHz. G.726, originally designed as a half-rate alternative to 64 kbps PCM 
coding (companding), is used in some digital network equipment for transmission of speech and voiceband 
data. This algorithm is ideal for any application that requires speech compression, or encoding for noise im-
munity, effi cient regeneration, easy and effective encryption, and uniformity in transmitting voice and data 
signals. The 3, 4, and 5 bit versions of G.726 were once known as CCITT G.723. This standard was a subset 
of the G.726 algorithm. The 4-bit version of G.726 (32 kbps) was also known as CCITT standard G.721. 
Note that ITU G.723.1 now refers to a standard for a 5.3 kbps and 6.3 kbps dual-rate speech coder and 
should not be confused with ITU G.726 or the old CCITT G.723 ADPCM standard. 

The   Mixed-Excitation Linear Predictive (MELP) vocoder will be the new 2,400 bps Federal Standard 
speech coder. It was selected by the United States Department of Defense Digital Voice Processing Con-
sortium (DDVPC) after a multiyear extensive testing program. The selection test concentrated on four 
areas: intelligibility, voice quality, talker recognizability, and communicability. The selection criteria also 
included hardware parameters such as processing power, memory usage, and delay. MELP was selected 
as the best of the seven candidates and even beat the FS1016 4,800 bps vocoder, a vocoder with twice the 
bit-rate [ASP200401]. MELP is robust in diffi cult background noise environments such as those frequently 
encountered in commercial and military communication systems. It is very effi cient in its computational 
requirements. This translates into relatively low power consumption, an important consideration for portable 
systems. The MELP vocoder was developed by teams from Texas Instruments Corporate Research in Dallas 
and ASPI Digital. The MELP vocoder is based on technology developed at the Center for Signal and Image 
Processing at the Georgia Institute of Technology in Atlanta.

The ITU Rec. G.723.1 is a 6.3- and 5.3-kbps vocoder for multimedia communications that was designed 
originally for low bit rate videophones. The algorithm’s frame size is 30 ms, and the one-way codec delay is 
37.5 ms. In applications where low delay is important, the delay G.723.1 may not be tolerable; however, if 
the delay is tolerable, G.723.1 provides a lower-complexity lower-bandwidth alternative to G.729, at the ex-
pense of a small degradation in speech quality. Each of these three ITU recommendations (G.723.1, G.728, 
and G.729) has the potential to become a key commercial mechanism for voice over IP on the Internet and 
other networks, since all three are low-bandwidth and are simple enough in complexity to be executed on the 
host processor, such as a PC, or implemented on a modem chip. Hence, this chapter examines these stan-
dards in some level of detail.

The   GSM-FR speech coder (ITU-T RPE/LTP) provides encoding 8 kHz sampled speech signals for trans-
mission at a rate of 13 kbps. The encoder compresses linear-PCM narrow band speech input data, and uses 
Regular Pulse Excitation with Long-Term Prediction (RPE-LTP) algorithm. The GSM-FR coder has been 
optimized to compress speech to the highest quality. The primary applications of this coder are in digital cir-
cuit multiplex equipment, satellite telephony and wireless standards such as PACS, DECT and PHP (Japan).

At the other end of the quality spectrum, ITU G.722 is an audio encoding/decoding standard that provides 7 
kHz audio bandwidth at 64 kbps. It is intended for conferencing applications. ITU G.722 has been fully im-
plemented on a single DSP. The coding system uses Sub-Band Adaptive Differential Pulse Code Modulation 
(SB-ADPCM). The input signal to the coder is digitized using a 16-bit A-D sampled at 16 kHz. Output from 
the encoder is 8 bits at an 8 kHz sample rate for 64 kbps, which can be stored to disk for later playback. The 
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decoder operates in exactly the opposite fashion. An 8-bit coded input signal is decoded by the SB-ADPCM 
decoders. The result is a 16 kHz sampled output. The overall compression ratio of the G.722 audio coder is 4 
to 1 [ASP200401]. G.722, designed for high quality speech applications in the telecommunications market, can 
be used in a variety of applications, including audio coding for medium quality audio systems.

2.3  Signaling
This section provides a short description of call control signaling protocols that are applicable to VoP, 
including VoIP, VoMPLS, VoWi-Fi, and VoIPv6. Signaling is a critical mechanism to enable call setup as 
well as to enable delivery of advanced “supplementary” services. Signaling is needed for both on-net call 
establishment, as well as, and even more so, for interworking with the PSTN. Three approaches have arisen 
in the past few years regarding signaling in VoP applications (see Figure 2.10 [VOV200101]):

All elements (NEs and CPEs) have intelligence; in this case, one would employ ITU-T H.323.
The network is intelligent, but the end-nodes are “dumb.” In this case, one would employ MGCP 
(Media Gateway Control Protocol), MEGACO/H.248 (Media Gateway Controller18), CCSS7 (Com-
mon Channel Signaling System 7), and BICC (Bearer-Independent Call Control).
The end-nodes are intelligent, but the network is “dumb.” In this case, one would employ Session 
Initiation Protocol (SIP).

Traditional carriers tend to subscribe to the fi rst two models, while enterprise-oriented folks tend to sub-
scribe to the last model. H.323 (various versions) has the largest market share to date, but it is expected 
that there will be an inversion at some point in the future. It is derived from ISDN signaling protocols and, 
therefore, has an affi nity for PSTN-like and          PSTN-interworking environments. It is a kind of ITU-T Q.931 
on TCP/IP.

Media

MGCP RTPRAS SIP

IP

LAN or WAN

H.245

H.323

H.323 Version 1 and 2 supports H.245 over TCP, Q.931 over TCP, and RAS over UDP.
H.323 Version 3 and 4 supports H.245 over UDP/TCP, Q.931 over UDP/TCP, and RAS over UDP.
SIP supports TCP and UDP.

H.225

Q.931 RTCP RTSP

TCP UDP

Audio/Video

Signaling and
Gateway Control

Call Control and Signaling 

Figure 2.10: Comparison of                    signaling protocols.

•
•

•

18 The MEGACO initiative has a genesis in IPDC (proposed by Level 3, 3Com, Alcatel, Cisco and others) and SGCP (Telcordia). 
These protocols were brought together by the IETF to form MGCP (Media Gateway Control Protocol); work continues under the 
responsibility of the MEGACO Working Group.
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The chronology of the standardization efforts is as shown in Table 2.10.

Table 2.10: Chronology of the major signaling protocols.

Standard Original Date Proponents Comments

ITU-T H.323 v1: May 1996 Carriers Complex

ITU-T H323 v2: January 1998 Carriers Complex

ITU-T H323 v3: September 1999 Carriers Complex

ITU-T H323 v4: November 2000 Carriers Complex

IETF SGCP (Simple Gateway 
Control Protocol)

July 1998 Telcordia, Cisco Superseded

IPCD (IP Device Control) August 1998 Level 3 Folded into MGCP 0.1

IETF MGCP 0.1 October 1998 IETF

MDCP (Media Device Control 
Protocol)

December 1998 Lucent Folded into MEGACO

MEGACO (MGCP+) April 1999 IETF

IETF SIP March 1998 IETF, Industry Newcomers Experiencing major deployment

 

Signaling is critical and is fundamental to the development of carrier-grade feature-rich telephony services. 
True end-to-end functionality is needed (spanning intraenterprise, intracarrier, and intercarrier domains) for 
VoIP to fulfi ll the service substitution role. Until VoIP signaling is taken more seriously by developers and 
until such time that these developers bring out truly standardized interoperable products, particularly in a 
carrier-to-carrier environment, the penetration of VoIP will remain at the margins, namely, a few percentage 
points globally in terms of actual paid-for call volume carried.

The different signaling protocols have been developed in different camps to address the need for real-time 
session signaling over packet-based networks. Each of these protocols has different origins and different 
supporters with differing priorities.  H.323 was originally developed in the enterprise LAN community as 
a video-conferencing technique and has much in common with  ISDN signaling protocols such as Q.931. 
MGCP/MEGACO comes from the carrier world and is closely associated with intradomain control of 
softswitches and media gateways, and so on. The IETF developed SIP, reusing many familiar Internet ele-
ments: SMTP, HTTP, URLs, MIME, and DNS. Despite all being signaling protocols, they are not equals 
and peers—they can and will coexist; however, there is some debate as to what extent [SIP200301]. Table 2.11 
provides a basic comparison between the protocols [SIP200301].

Table 2.11: Comparison between three major signaling protocols.

 SIP  H.323  MGCP/MEGACO
Philosophy Horizontal Vertical Vertical

Complexity Medium-Low High High

Scope Simple Full Partial

Scalability Good Reasonable Moderate

New Service Revenues Yes No No

Internet Cohesion Yes No No

SS7 Compatibility Poor Reasonable Good

Cost Low High Moderate
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2.3.1  H.323 Standards
ITU-T H.323 was initially developed for video and multimedia. It was later adopted by the VoIP community 
for direct voice applications; hence, we cover this protocol here in the context of voice and in the context of 
alternative solutions. According to ITU-T Recommendation H.323 Version 4, H.323: “Describes terminals 
and other entities that provide multimedia communications services over Packet-Cased Networks (PBN), 
which may not provide a guaranteed quality of service. H.323 entities may provide real-time audio, video 
and/or data communications.” H.323 is an umbrella standard covering multimedia communications over 
LANs. H.323 defi nes: (1) Call establishment and teardown and, (2) Audio visual or multimedia conferenc-
ing. H.323 defi nes sophisticated multimedia conferencing supporting applications such as whiteboarding, 
data collaboration, or video conferencing. Basic call features include: call hold, call waiting, call transfer, 
call forwarding, caller identifi cation, and call park. Figure 2.11 depicts the protocol model.

Media Data/Fax

TCPTCP TCPTCP UDP

RAS

IP

H.245
H.225 H.225

Q.931

RTP

RTCP T.120 T.38

Video
Codec
H.261
H.263

Audio
Codec
G.711
G.723
G.729

Call Control
and Signaling

Figure 2.11:  H.323 signaling protocol.

H.323 entities consist of (see Figure 2.12):

Terminals
Gateways
Gatekeepers
MCUs

•
•
•
•
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The H.323-umbrella of protocols consists of:

Parts of  H.225.0 (registration, admission, status [RAS]), Q.931
 H.245
RTP/RTCP
Audio/video codec standards

Terminal 

Packet-based 
Networks 

Circuit-switched 
Networks 

Multipoint 
Control Unit 

Gatekeeper 

Gateway 

Figure 2.12: H.323 environment.

 H.323 Entities: Terminals. Terminals are endsystems (or endpoints) on a LAN (see Figure 2.13). The 
terminal embodies capabilities to supports real-time, two-way communications with another H.323 entity. 
The terminal must support (1) Voice – audio codecs; and, (2) Signaling and setup – Q.931, H.245, RAS. Op-
tional support includes video coders and data (whiteboarding). Audio codecs (G.711, G.723.1, G.728, etc.) 
and video codecs (H.261, H.263) compress and decompress media streams. Media streams transported on 
RTP/RTCP (RTP carries actual media while RTCP carries status and control information). RTP/RTCP is car-
ried in User Datagram Protocol (UDP) datagrams. Signaling is transported reliably over TCP. RAS supports 
registration, admission, status; Q.931 handles call setup and termination, and H.245 provides capabilities 
exchange.

•
•
•
•
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Microphone/
Speaker

Camera/Display

Data Interface

System Control

Local Area
Network
Interface

(10/100/1000
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Ethernet)

System Control
User Interface

H.245 Control

H.225.0 Layer

H.323 Terminal

Audio
G.711, G.722,

G.723.1, G.728,
G.729

Video Codes
H.261, H.263

Call Control
H.245 (Q.931)

RAS Control
(Gatekeeper)

Figure 2.13:  H.323 terminal.

       H.323 Entities: Gateways. Gateways provide interfaces between the LAN and the switched circuit network. 
Gateway provides translation between entities in a packet switched network (example, IP/MPLS network) 
and circuit switched network (example, PSTN network). They can also provide transmission formats 
translation, communication procedures translation, H.323 and non-H.323 endpoints translations or codec 
translation. Gateways translates communication procedures and formats between networks, and handle call 
setup and clearing and compression and packetization of voice. Various types of gateways exist, however, 
the most common example is a IP/PSTN gateway. Naturally, the gateway must support the same protocol 
stack described above on the local side.

H.323 Entities: Gatekeeper. Gatekeepers are optional elements but must perform certain functions if pres-
ent. Gatekeepers manage a zone (a collection of H.323 devices). Usually there is one gatekeeper per zone; 
alternate gatekeeper might exist for backup and load balancing. Typically gatekeepers are a software appli-
cation, implemented on a PC, but can be integrated in a gateway or terminal. Some protocol messages pass 
through the gatekeeper while others pass directly between the two endpoints. The more messages that are 
routed between the gatekeeper, the more the load and responsibility (more information and more control). 
Notice that media streams never passes through the gatekeeper function. Mandatory gatekeeper functions 
include:
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Address translation (routing)
Admission control
Minimal bandwidth control – request processing
Zone management

Optional  gatekeeper functions include:

Call control signaling – direct handling of Q.931 signaling between endpoints
Call authorization, bandwidth management, and call management using some policy
Gatekeeper Management Information (MIB)
Directory services

 H.323 Entities: Multipoint Control Unit (MCU). MCUs are endsystems that supports conferences between 
three or more endpoints. The MCU can be a stand-alone device (e.g., PC) or integrated into a gateway, gatekeeper, 
or terminal. Typically, the MCU consists of a Multipoint Controller (MC) and a Multipoint Processor (MP):

MC – handles control and signaling for conference support;
MP – receives streams   from endpoints, processes them, and returns them to the endpoints in the 
conference.

MCUs can be of the centralized kind or of the decentralized kind.

The rest of this section briefl y illustrates signaling interactions [RAD199801]. Figure 2.14 shows a gate-
keeper-routed call signaling process. This discussion expands on the interaction shown in Figure 2.14 for a 
gatekeeper-routed call signaling (ITU-T Q.931/H.245) interaction between client A and client B [RAD199801]. 
This interaction supports the establishing a call between client A and client B. 

Terminal B 

Voice/Data Client Voice/Data Client 

Ethernet 
IP Phone 

Ethernet 
IP Phone 

Terminal A Gatekeeper 

1. ARQ 

2. ACF 

5. ARQ 

6. ACF 

7. Alerting 
8. Connect 

H.245 Messages 
RTP Media Path 

3. SETUP 
4. Call Proceeding 

Figure 2.14: H.323 call setup.

•
•
•
•

•
•
•
•

•
•
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The steps are:

Discover and register with the gatekeeper – RAS channel

  Discover Gatekeeper (RAS) works as follows:

   Client transmits a Multicast Gatekeeper Request packet (who is my gatekeeper?)

  Gatekeeper responds with a Gatekeeper Confi rmation packet or Gatekeeper Reject packet

    Registering with Gatekeeper (RAS) works as follows:

   Client notifi es gatekeeper of its address and aliases

   Client transmits Gatekeeper Registration Request 

   Gatekeeper responds with either Registration Confi rmation or Registration Rejection

   In network deployment in diagram, both client A and client B register with gatekeeper A

Routed call setup between the endpoints through the gatekeeper – Q.931 call signaling

    Call Admission (RAS) handled as follows: 

   Client A initiates Admission Request (can I make this call?); 
   the packet includes a maximum bandwidth requirement for the call

   Gatekeeper responds with Admission Confi rmation

    •  Bandwidth for call is either confi rmed or reduced

    •  Call signaling channel address of gatekeeper is provided

    Call Setup Through Gatekeeper (Q.931), as follows:

   Client A sends call setup message to gatekeeper

   Gatekeeper routes message to client B

   If client B accepts, admission request with gatekeeper is initiated

   If call accepted by gatekeeper, client B sends a connect message to client A 
   specifying the H.245 call control channel for capabilities exchange

Initial communications and capability exchange –   H.245 call control

  Capabilities Exchange (H.245):

   Clients exchange call capabilities with Terminal Capability Set message that 
   describes each client’s ability to transmit media streams, i.e., audio/video codec 
   capabilities of each client

   If conferencing, determination of MCU is negotiated during this phase

   After capabilities exchange, clients have a compatible method for transmitting media 
   streams; multimedia communication channels can be opened

1.

2.

3.
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Establish multimedia communication/call services – H.245 call control

  Establish Multimedia Communication:

   To open a logical channel for transmitting media streams, the calling client transmits 
   an Open Logical Channel message (H.245)

   Receiving client responds with Open Logical Channel Acknowledgment message (H.245)

   Media streams are transmitted over an unreliable channel; control messages are 
   transmitted over a reliable channel

   Once channels established, either client or gatekeeper can request call services, i.e., 
   client or gatekeeper can initiate increase or decrease of call bandwidth

Call termination – H.245 call control and Q.931 call signaling

  Call Termination:

   Either party can terminate the call

   Assume client A terminates call

   Client A completes transmission of media and closes logical channels used to 
   transmit media

    •  Client A transmits End Session Command (H.245)

    •  Client B closes media logical channels and transmits End Session Command

    •  Client A closes H.245 control channel

    •  If call signaling channel is still open, a Release Complete message (Q.931) is 
    sent between clients to close this channel

2.3.2 Introduction to  Session Initiation Protocol (SIP)
According to IETF RFC 2543, Session Initiation Protocol (SIP) (now obsoleted by RFC 3261, RFC 3262, 
RFC 3263, RFC 3264, RFC 3265) is an application layer signaling protocol that defi nes initiation, modifi ca-
tion and termination of interactive, multimedia communication sessions between users. SIP was designed 
for: (1) integration with existing IETF protocols; (2) scalability and simplicity; (3) mobility (including pres-
ence/proximity, multimodal and collaborative communications); and, (4) easy feature- and service-creation. 
SIP is designed to be fast and simple in the (enterprise) core of the network. SIP can support these features 
and applications, among others: basic call features (call waiting, call forwarding, call blocking, etc.); unifi ed 
messaging, call forking, click-to-talk, instant messaging, and fi nd me/follow me. SIP is a peer-to-peer pro-
tocol (as are other Internet protocols) where a client can establish a session with another client; by contrast 
MEGACO is a master-slave protocol. SIP can use any network transport protocol, for example, UDP (RFC 
768), TCP (RFC 761), and Stream Control Transmission Protocol (SCTP) (RFC 2960). It appears that over 
time, SIP will achieve signifi cant market penetration. SIP is examined in detail in Chapter 3. This section 
provides a quick summary with the goal of a comparison with the other signaling protocols. 

SIP is the basis of the industry-standard, IP-centric converged communications architecture; it does for 
real-time interhuman communications what HTML did for browsing. SIP serves as a signaling mechanism 
to establish a wide variety of sessions, interactive communication that takes place between two or more 

4.

5.
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entities over an IP network, from a simple two-way telephone call or an instant message exchange, to a 
collaborative multimedia conferencing session. SIP does not dictate the details within a session but instead 
negotiates interaction based on the capabilities of participants. Features and applications are integrated at 
the session and service layers, independent of access constraints and the processes of message transport. In 
SIP networks, voice is just another media. SIP is perceived as being capable of enabling innovative com-
munications capabilities, where it is easy to introduce a new services. SIP supports a distributed architecture. 
Many telecommunications vendors are SIP-enabling their PBX and customer contact centers to enrich these 
environments and provide converged desktop functionality. The converged desktop tightly couples the tele-
phone (whether digital, analog, or IP) and the PC for a richer experience, drives service ubiquity, and allows 
employees to have desktop functionality anywhere, anytime, using any device. SIP offers the mechanism for 
creating real-time integrated communications [NOR200501].

Figure 2.15 identifi es key SIP components. User Agent is an application that initiates, receives, and termi-
nates calls. There are two types:

  User Agent Clients (UAC) – An entity that initiates a call.
  User Agent Server (UAS) – An entity that receives a call.

Both UAC and UAS can terminate a call.

User Agent 

PSTN 

LAN (Layer 2 
Switch) 

Proxy 
Server 

Proxy 
Server 

Location 
Server 

Redirect 
Server 

Registrar 
Server 

SIP Components 

Gateway 

Figure 2.15: An       SIP environment.

•
•
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The   Proxy Server is an intermediary program that acts as both a server and a client to make requests on 
behalf of other clients. Requests are serviced internally or by passing them on, possibly after translation, to 
other servers. The server interprets, rewrites or translates a request message before forwarding it.

The   Location Server is utilized by an SIP redirect or proxy server to obtain information about a called 
party’s possible location(s).

The   Redirect Server is a server that accepts an SIP request, maps the address into zero or more new address-
es and returns these addresses to the client. Unlike a proxy server, the redirect server does not initiate its own 
SIP request. Unlike a user agent server, the redirect server does not accept or terminate calls [VOV200101].

The   Registrar Server is a server that accepts REGISTER requests. The register server may support authen-
tication. A registrar server is typically co-located with a proxy or redirect server and may offer location 
services.

SIP components communicate by exchanging SIP messages (see Table 2.12). SIP borrows much of the syn-
tax and semantics from HTTP. An SIP message looks like an HTTP message—message formatting, header 
and MIME (Multipurpose Internet Mail Extension) support. The SIP address is identifi ed by an SIP URL; 
the URL has the format: user@host.

Table 2.12:   SIP messages at a snapshot.

= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = == = = = = = = = = = = = = = 

SIP Messages

INVITE: Initiates a call by inviting the user to participate in the session

ACK: Confi rms that the client has received a fi nal response to an Invite request

BYE: Indicates a termination of the call

CANCEL: Cancels a pending request

REGISTER: Registers the user agent

OPTIONS: Used to query the capabilities of a server

INFO: Used to carry out-of-bound information, such as dual-tone multiple frequency (DTMF) digits

SIP Responses

1xx: Informational messages

2xx: Successful responses

3xx: Redirection responses

4xx: Request failure responses

5xx: Server failure responses

6xx: Global failure responses

= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = == = = = = = = = = = = = = = 
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Establishing communication using  SIP usually takes place in six steps:

Register, initiate, and locate the user.
Determine which media to use—involves delivering a description of the session to which the user is 
invited.
Determine the willingness of the called party to communicate. The called party must send a re-
sponse message to indicate a willingness to communicate: accept or reject.
Set-up the call.
Modify or handle the call.
Terminate the call.

As noted above, SIP was designed for integration with IETF environments. Existing IETF protocol standards 
can be used to build an SIP application. The protocol can work with existing IETF protocols such as: RSVP 
(Reserve Network Sesources); real-time protocol (transport real-time data and provide QoS feedback); 
real-time streaming protocol (controls delivery of streaming media); session advertisement protocol (ad-
vertising multimedia session via multicast); session description protocol (describing multimedia sessions); 
multipurpose Internet mail extension (content description); hypertext transfer protocol (web pages delivery); 
and other IETF protocols. SIP supports fl exible and intuitive feature creation using SIP-CGI (SIP-Common 
Gateway Interface) and CPL (Call Processing Language).

Facts about SIP noteworthy of observation include the following [CIS200501]:

SIP is a signaling protocol that is independent of transport protocol; it can run on top of several transport 
protocols, including UDP, TCP, and Stream Control Transmission Protocol (SCTP).

SIP does not mandate or include specifi c QoS capabilities; it works with other protocols that perform this 
function.

SIP is independent of any security protocol and may be used with several security protocols, such as  Trans-
port Layer Security (TLS) and IP Security (IPSec). SIP takes advantage of existing IP security standards 
to help ensure the integrity of communications sessions. SIP supports TLS, the successor to  Secure 
Sockets Layer (SSL), to secure the signaling channel while Secure RTP (SRTP) encrypts the media to 
ensure voice privacy. Together, they represent a strong security system based on established standards 
including Advanced Encryption Standard (AES), the U.S. government encryption standard.

SIP is a peer-to-peer protocol, not an IP-to-PSTN gateway control protocol such as MGCP or H.248.
SIP provides methods to control sessions, but does not specify the applications and services that will use 

those sessions; as a result, SIP does not guarantee application behavior.
SIP is independent of the media used, allowing the fl exibility to initiate sessions for different media types.
Interdomain Operation. One of the advantages of SIP is the ability to communicate between domains 

directly via the Internet. Consider arranging a multimedia conference with a business partner company. 
Today, one would likely do this through a third-party conferencing provider. If both the user and the 
partner company employed SIP-enabled multimedia infrastructures, the conference could be conducted 
directly via the Internet, with no need to reserve conference time or pay for the service. It would be as 
easy as putting multiple recipients on the “To:” line of an e-mail message. While this type of capabil-
ity is eminently feasible using an all-IP infrastructure, it is far more diffi cult in an environment that 
involves  TDM switching, which requires numerous  PSTN-to-IP gateways. In either case, it requires 
compatibility between the applications on both ends.

Feature Support. SIP is intended to provide interoperability (enabling customers to use IP phones from one 
vendor, while employing SIP proxies from another, for example). Because many aspects of SIP-enabled 
applications are not defi ned in the standards, much of the implementation work is left up to the vendors. 

1.
2.

3.

4.
5.
6.
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Customers may fi nd that not all features supported by one vendor’s SIP endpoint will work with another 
vendor’s call-control servers and proxies; they need to specify which features they will need in their 
implementations.

Challenges:   NAT Traversal. As noted in Chapter 1, NAT is a common way to hide a private IP address 
from the public Internet and to extend the number of IP addresses that an enterprise can employ. NAT 
gateways translate a private address coming from inside an organization to a different address that is 
conveyed to outside IP devices. That translation can be diffi cult in an SIP session, since SIP needs to 
know the IP address of each endpoint device involved in a session. Many security component vendors 
address the NAT issue by examining Session Description Protocol (SDP) information, and may try to 
resolve addresses that were changed by NATs. This approach can cause problems in certain scenarios, 
particularly if the signaling information is encrypted between the client and the server. Another solution 
is a protocol called   STUN (simple traversal of UDP through network address translators). When a user 
sends a message to a server from inside a NAT, the server will refl ect back whatever address the NAT 
gives it. STUN allows this refl ected address to be used to establish an RTP session with the user inside 
the NAT, without involving any of the SIP proxies in the middle. Solutions to the NAT issue will vary 
depending on the exact scenario and environment; the industry has not settled on universally-accepted 
solutions. Both of these topics are revisited in Chapter 5. 

However, by itself, SIP is not a communications panacea—it works with many other standards to foster 
open, reliable, rich multimedia communications.

Functionally, SIP and H.323 are similar ([VOV200101], [DAL199901] and [COL200201]). Both protocols provide 
for call control, call setup, and call teardown (with capabilities exchange). Both protocols provide basic call 
features such as call waiting, call hold, call transfer, call forwarding, call return, call identifi cation, or call 
park. 

“High power/early adopter users” are moving toward a mode of communication that has been called 
 always-on integrated communications. Integrated communications are comprised up of asynchronous 
communications (e-mail, voicemail, short message services) and synchronous communications (IM, voice, 
video, and application sharing), along with presence and location intelligence. While each of these com-
munication instances can be deployed on a discrete basis, “integrated” carries the implication of a seamless 
user experience across all these media. “Always-on” implies uninterrupted access (connectivity) any time, 
any place, in the sense of Pervasive computing—also called  invisible computing or ubiquitous computing. 
Vendors are taking different approaches to meeting the advanced needs of the increasingly distributed and 
mobile users for secure and reliable real-time collaborative tools. For example, video conferencing and data 
web portal vendors are expanding into data and web conferencing, respectively. While IM and presence are 
often a common element of these systems, telephony, if offered at all, is very basic. In contrast, VoIP ven-
dors seek to offer always-on interperson communications solutions in the form of business telephony (both 
desktop and mobile) and customer contact solutions, and presence-based, rich media capabilities in the form 
of video,  IM, and application sharing. SIP is being embraced either as a gateway function or at the heart of 
their emerging architectures [NOR200501]. 

Central to the SIP-based architecture is the notion of presence. Real-time presence information is captured 
across a broad range of activities including being active on a device (telephone, PC, PDA, BlackBerry), hav-
ing a session in progress (whether synchronous or asynchronous), or being at a location (offi ce, functional 
area like a conference room, or surgery). This information can be combined with location intelligence and 
selectively made available to clients and to any SIP-enabled application, such as CRM, document handling, 
workfl ow, and customer service. SIP can be used to extend sessions and the notion of presence; for example, 
into vertically-targeted IM systems [NOR200501]. The topic of presence is revisited in Chapter 4.
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2.3.3 MEGACO
As noted,  MEGACO is a protocol that is evolving from MGCP and developed jointly by ITU and IETF: it 
is known as MEGACO in the IETF and H.248/H.GCP in the ITU-T. MEGACO has developed by the carrier 
community to address the issue of CCSS7/VoIP integration. The H.323 initiative had grown out of the LAN 
and had diffi culties scaling to public network proportions; the architecture that it created was incompatible 
with the world of public telephony services, struggling with multiple gateways and the CCSS7. To address 
this problem, the new initiative exploded the gatekeeper model and removed the signaling control from 
the gateway, putting it in a “media gateway controller” or “softswitch.” This device would control multiple 
“media gateways.” This is effectively a decomposition of the gatekeeper to its CCSS7 equivalents. MGCP/
MEGACO is the protocol used to communicate between the softswitch and the media gateways [SIP200301]. 
MEGACO brings a performance enhancement compared to MGCP: it can support thousands of ports on a 
gateway, multiple gateways, and can accommodation for connection-oriented media such as TDM and ATM. 

MGCP/MEGACO “exploded” the gatekeeper model of the  H.323 model and removed the signaling control 
from the gateway, putting it in a “media gateway controller” or “softswitch.” This device controls multiple 
“media gateways.” In the MGCP/MEGACO architecture, the intelligence (control) is unbundled from the 
media (data). It is a master-slave protocol where the master has absolute control and the slave simply ex-
ecutes commands. The master is the media gateway controller, or softswitch (or call agent) and the slave is 
the media gateway (this can be a VoIP gateway, an MPLS router, IP phone, etc.) [SIP200301]. 

MGCP/MEGACO is used for communication to the media gateways. MGCP/MEGACO instructs the media 
gateway to connect streams coming from outside a packet network on to a packet stream such as RTP. The 
softswitch issues commands to send and receive media from addresses, to generate tones, and to modify 
confi guration. The architecture, however, requires a session initiation protocol for communication between 
gateway controllers. 

When a gateway detects an off-hook condition, the softwsitch instructs the gateway controller via MEGACO 
commands, to put dial tone on the line and collect   DTMF tones. After detecting the number, the gateway 
controller determines how to route the call and, using an intergateway signaling protocol such as SIP, H.323, 
or Q.BICC, contacts the terminating controller. The terminating controller could instruct the appropriate 
gateway to ring the dialed line. When the gateway detects the dialed line is off hook, both gateways could 
be instructed by their respective gateway controllers to establish two-way voice across the data network. 
Thus, these protocols have ways to detect conditions on endpoints and notify the gateway controller of their 
occurrence; place signals (such as dial tone) on the line; and create media streams between endpoints on the 
gateway and the data network, such as RTP streams [SIP200301]. 

There are two basic constructs in MGCP/MEGACO: terminations and contexts. Terminations represent 
streams entering or leaving the gateway (for example, analogue telephone lines, RTP streams, or MP3 
streams). Terminations have properties, such as the maximum size of a jitter buffer, which can be inspected 
and modifi ed by the gateway controller. A termination is given a name, or TerminationID, by the gateway. 
Some terminations, which typically represent ports on the gateway, such as analog loops or DS0s, are in-
stantiated by the gateway when it boots and remain active all the time. Other terminations are created when 
they are needed, get used, and then are released. Such terminations are called ephemerals and are used to 
represent fl ows on the packet network, such as an RTP stream. Terminations may be placed into contexts, 
which are defi ned as when two or more termination streams are mixed and connected together. The normal, 
“active” context might have a physical termination (say, one DS0 in an E3) and one ephemeral one (the RTP 
stream connecting the gateway to the network). Contexts are created and released by the gateway under 
command of the gateway controller. Once created, a context is given a name (ContextID), and can have ter-
minations added and removed from it. A context is created by adding the fi rst termination, and it is released 
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by removing the last termination. MGCP/MEGACO uses a series of commands to manipulate terminations, 
contexts, events, and signals [SIP200301]:

Add – adds a termination to a context and may be used to create a new context at the same time 
Subtract – removes a termination from a context and may result in the context being released if no 
terminations remain 
Move – moves a termination from one context to another 
Modify – changes the state of the termination 
AuditValue and AuditCapabilities – return information about the terminations, contexts, and gen-
eral gateway state and capabilities 
ServiceChange – creates a control association between a gateway and a gateway controller and also 
deals with some failover situations. 

2.4   Numbering
This section looks at one facet of what is needed to affect a packet/circuit integration in the  PSTN both for 
basic services as well as for advanced new services, namely, a workable cross-addressing mechanism. The 
section briefl y looks at   ENUM (RFC 2916, original issue: September 2000) proposal. ENUM defi nes a 
Domain Name System (DNS)-based architecture and protocols for mapping a telephone number to a set of 
attributes (e.g., URLs) that can be used to contact a resource associated with that number. This IETF proto-
col is designed to assist in the convergence of the PSTN and the IP network, since supports is the mapping 
of a telephone number from the PSTN to Internet services. 

 Directory Services are part of an overall networking functionality (e.g., X.500 Directory Services). VoIP 
must support effective addressing and address translation. These functions can be supported in a customer-
resident gateway, but for full scalability, the directory function is best located in the network at large. A 
protocol is then needed to support various interactions with the Directory. 

ENUM was developed as a (potential) solution to the question of how network elements can fi nd services 
on the Internet using only a telephone number, and how telephones, having an input mechanism limited to 
twelve keys on a keypad, can be used to access Internet services [ENU200301]. ENUM at its most basic level 
aims at facilitating the convergence of PSTN and IP networks; it is the mapping of a telephone number from 
the public switched telephone network to Internet functionalities. The convergence can be facilitated, that is 
the PSTN can be organically linked to the Internet by making the telephone number part of an Internet ad-
dress. ENUM is a proposed approach to supporting a number of directory-related functions. 

With ENUM, the telephone number can also serve as basis for a person’s e-mail address. This agreement 
allows a person to reach multiple services by knowing a single contact address (number). ENUM supports a 
capability that takes “a telephone number in, and gives a URL out.” The protocol takes a complete, interna-
tional telephone number and resolves it to a series of URLs using a DNS-based architecture. 

ENUM was developed as a solution to the question of how to fi nd services on the Internet using only a 
telephone number, and how telephones, which have an input mechanism limited to twelve keys on a keypad, 
can be used to access Internet services [ENU200301]. Because ENUM puts telephone numbers into the DNS, it 
allows for a gamut of applications based only on a telephone number. Proponents see the most promising ap-
plication as being an improvement in VoIP for telephone calls made over the Internet; additional applications 
include addressing for fax machines, e-mail, instant messaging, and websites. 

Although the technical issue is somewhat straightforward, the “politics” are sensitive. The issue has gener-
ated controversy, because “number administration” has intrinsic prestige, infl uence, and power. The issue 
is particularly thorny on the international arena. People that control addressing control certain aspects of 

•
•

•
•
•

•
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network operations, design, and even ownership. There is a competition that positions the heavily-regulated 
telephone industry against Internet entities that are uninterested in government regulation. Some nations 
are involved in the debate out of concern that a merged network could undermine state-owned telephone 
networks [CHA200101].

“ENUM” has a number of meanings. It is the name of a protocol that resolves fully qualifi ed telephone num-
bers to fully qualifi ed domain name addresses using a DNS-based architecture. It is the name of a chartered 
working group of the IETF chartered to develop protocols that map telephone numbers to resources found 
on the Internet using the DNS. It is also the title of RFC 2916, the approved protocol document that discuss-
es the use of DNS for the storage of ITU-T E.164 numbers and the available services connected to an E.164 
number. It should be noted that ENUM does not change the Numbering Plan and does not change telephony 
numbering or its administration in any way and it will not drain already-scarce numbering resources given 
that it uses existing numbers.

  E.164 is the specifi cation of the international telephone numbering plan administered by the ITU that speci-
fi es the format, structure, and administrative hierarchy of telephone numbers. Specifi cally, “E.164” refers to 
the ITU document that describes the structure of telephone numbers. The ITU issues country codes to each 
nation; the administration of telephone numbers within each country is governed by that country’s telecom-
munications regulatory agency. A fully qualifi ed E.164 number is designated by a country code, an area or 
city code, and a phone number. For example, a fully qualifi ed E.164 number for the phone number 555-1234 
in New York City (area code 212) in the United States (country code 1) is +1-212-555-1234. E.164 numbers 
are appropriate for use in ENUM because they are an existing system for global traceability. 

Under this proposal, the number 1-212-555-1234 would become 4.3.2.1.5.5.5.2.1.2.1.e164.arpa as an In-
ternet address (that is, the telephone number backward—separated by periods—with the extension “.e164.
arpa” added in). The system would recognize both addresses as belonging to the same individual or entity19. 
The extension “.e164.arpa” was picked to appease both camps: as noted, E.164 is the specifi cation for the 
carriers’ numbering scheme, while arpa refers to the Advanced Research Projects Agency, the U.S. agency 
that funded much of the Internet work in the 1970s and 1980s.

  Telephone numbers currently identify many different types of end terminals, supporting different services 
and protocols. Telephone numbers are used to identify telephones stations, fax machines, pagers, data 
modems, email clients, text terminals for the hearing impaired, and so on. A prospective caller may wish to 
discover which services and protocols are supported by the terminal named by a given telephone number. 
The caller may also require more information beyond simply the telephone number to communicate with the 
terminal. As an example, certain telephones can receive short e-mail messages. The telephone number does 
not embody suffi cient information to be able to send email; the sender must have more information (equiva-
lent to the information in a mailto: URL). From the callee’s perspective, the owner of the telephone number 
or device may wish to control the information that prospective callers may receive. The architecture must al-
low for different service providers competing openly to furnish the directory information required by clients 
to reach the desired telephone numbers. To address these issues, the IETF Working Group specifi ed a while 
back a DNS-based architecture and supportive protocols that fulfi ll the following requirements: 

The system must enable resolving input telephone numbers into a set of URLs which represent dif-
ferent ways to start communication with a device associated to the input phone number. 

1.

19 User’s are not required to use the common number, and they could still keep separate telephone and e-mail addresses. But if the use 
it, they gain the advantages intrinsic with the system.
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The system must scale to handle quantities of telephone numbers and queries comparable to current 
PSTN usage. It is highly desirable that the system respond to queries with speed comparable to cur-
rent  PSTN queries, including in the case of a query failure. 
The system must have some means to insert the information needed to answer queries into the serv-
ers via the Internet. The source of this information may be individual owners of telephone numbers 
(or the devices associated to the number), or it may be service providers that own servers that can 
answer service-specifi c queries. The system is designed not preclude the insertion of information 
by competing service providers (in such a manner that allows for the source of the information to 
be authenticated). 
The system must enable the authorization of requests and of updates. 
The effort must carefully consider and document the security and performance requirements for the 
proposed system and its use. 
The effort must take into account the impact of developments in the area of local number portabil-
ity on the proposed system. 

Naturally, the protocol put forth needs to take into consideration how number resolution using the ENUM 
system is affected by the PSTN infrastructure for telephone numbering plans, such as the ITU-T E.164 
standard. 

The documentation developed in the recent past (Internet-Drafts: Number Portability in the GSTN: An 
Overview and Request for Comments (RFC) 2916: E.164 number and DNS) specifi es the architecture and 
protocols (query, update) of the ENUM system. 

Proponents argue that a government-sanctioned standard (e.g., through adoption via the ITU) for a central-
ized directory system is needed to avoid the consumer confusion that arises as the plethora of devices people 
use to communicate becomes more pronounced [CHA200101].

As inferred from the material presented this far, the IETF has looked at the issue and generated RFC(s) and 
Drafts. Liaisons with the ITU have occurred. Lately, a number of U.S. governmental and nongovernmental 
groups have been studying where to asset their power over the telephone-Internet database: 

The  Federal Communication Commission (FCC), which oversees the U.S. telephone system;
The Commerce Department, which has taken charge of the Internet’s addressing system;
The State Department, which has responsibility for cross-border issues and is the department that 
has representation at the ITU; 
The Federal Trade Commission, which is responsible with protecting consumers (e.g., privacy is-
sues); and,
The Internet Corporation for Assigned Names and Numbers (ICANN), which has some jurisdiction 
over the Internet addressing system.

Because the   ENUM plan sits at the point-of-interaction of the telephone and Internet worlds, it presents a 
nontrivial policy issue in the U.S. and elsewhere. One of the issues the regulators could decide is who will 
take charge of the database that will map the telephone numbers to the Internet addresses. Some have lob-
bied the government to approve the proposal quickly (e.g., NeuStar); others want the regulators to steer clear 
of the debate (e.g., VeriSign).

Proponents, in the meantime continue to play advocacy rolls. The ENUM Alliance has been formed to assist 
ENUM implementers in the commercial marketplace. More work remains to be done in this arena.

2.

3.

4.
5.

6.

•
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2.5   VoIP and Wireless Networks

2.5.1 Approaches
To date, VoIP has seen a variety of applications as follows:

Within an enterprise setting, utilizing intersite intranet trunking in conjunction with PSTN gateways 
for off-net access; 
Consumer VoIP services obtained over cable TV or Digital Subscriber Line (DSL) infrastructures, 
also, sometimes, in conjunction with pure-play VoIP long-haul providers; and, 
(Of late a resurgence of) Internet-based telephony with industry moves in this space by several 
search-engine and related companies (voice transmission over the Internet goes back about a de-
cade, but not as a full-fl edged provider-offered service). 

In addition to these wireline applications, there is a symbiotic relationship, and emerging service support, 
between VoIP and wireless networks. VoIP can be carried by a number of wireless technologies such as 3G, 
WLAN, and Broadband Wireless Access (BWA). We refer to all of these as VoIP over Wireless (VoW) (the 
terminology Wireless VoIP—wVoIP—is used by some). 

In the past ten years cellular/wireless players have pressured the landline voice market. Separately, VoIP is 
now having a measurable impact on fi xed wireline networks; some forecasts claim up to 10% of the wireline 
voice traffi c will be handled via VoIP within fi ve years. But with the integrated use of VoIP over wireless 
technologies, specifi cally with VoW, the table could be turned upside down once again: VoW may bring new 
players to the mobile voice market thus further pressuring the voice revenues of existing mobile network op-
erators. With VoW enables fi xed operators, Mobile Virtual Network Operators (MVNOs), and VoIP service 
providers to bypass existing cellular voice services [3GS200501]. 

This section briefl y looks at this topic. Our discussion is fairly terse since an entire textbook could be dedi-
cated to this topic. We look at three VoW areas: (2) VoIP in enterprise WLAN (VoWi-Fi) environments; (2) 
VoIP over hotspot/WiMAX, and (3) VoIP in 3G cellular networks. 

(i) Enterprise WLAN Applications ( VoWi-Fi)
As VoIP-based technology begins to replace the traditional corporate PBX, there is interest in using a VoIP-
ready phone in a mobility mode. With this deployment enterprise associates can make use of a wireless 
H.323/SIP handset anywhere on site where the intranet provides WLAN connectivity. There is also interest 
in being able to roam the VoWi-Fi connection to a cellular service when the user leaves the building and 
enters the metro and/or national footprint. 

VoWi-Fi requires a number of enhancements to traditional WLANs, including:

Higher  WLAN speeds to support an adequate number of VoIP users. The transition to an  IEEE 
802.11g and/or 802.11n environment is a basic necessity in this context;
Support of QoS over the wireless (and also core intranet) infrastructure. The deployment of  IEEE 
802.11e QoS-supporting technology is another basic necessity;
Secure (voice) communications is highly desirable. The deployment of IEEE 802.11i security capa-
bilities is yet another requirement; 
Roaming between Access Points, fl oors, and subnets is needed, as is a handoff to a cellular ser-
vice when the corporate WLAN service is no longer available. The deployment of IEEE 802.11r 
roaming capabilities addresses this requirement (this capability, however, is expected to be avail-
able and/or implemented further into the future).  Roaming also brings up the question of whether 
a traditional IP solution is adequate or if one needs to utilize  Mobile IP (MIP) (IETF RFC 3344) 
[PER200201]; this is a fairly complex issue.
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It should be noted that enterprise users that have WLAN-ready laptops can, in theory, use softphones 
(software clients) to support VoIP connectivity with other corporate VoIP users. We do not consider this a 
full VoW environment because this arrangement has severe limitations as follows: (1) this application only 
works where there are a small handful of users off any one Access Point; (2) the softphone is generally pro-
prietary; and, (3) this solution does not readily interwork with non-VoIP and/or off-net voice uses.

(ii) VoIP over  Hotspot/ WiMax
Service providers are also considering offering VoIP services in IEEE 802.11b/11g hotspot environments. 
Furthermore there is interest in delivering metro-wide VoIP services using Wi-MAX (IEEE 802.16-based) 
connectivity. Since WiMAX is newer, we focus here on this technology (see Table 2.13 for a technical com-
parison of WiMAX to Wi-Fi [WIM200501]).  

The  IEEE 802.16 Working Group has developed a Point-to-Multipoint (PMP) broadband wireless access 
standard for systems in the frequency ranges 10–66 GHz and sub 11 GHz. This technology is targeted at 
metropolitan area environments. The IEEE 802.16 standard covers both the  Media Access Control (MAC) 
and the  physical (PHY) layers. A number of PHY considerations were taken into account for the target 
environment. At higher frequencies, Line-Of-Sight (LOS) is a must. This requirement eases the effect of 
multipath, allowing for wide channels, typically greater than 10 MHz in bandwidth. This gives the IEEE 
802.16 protocol the ability to provide very high capacity links on both the uplink and the downlink. For 
sub 11 GHz  Nonline-Of-Sight (NLOS) capability is a requirement. The original IEEE 802.16 MAC was 
enhanced to accommodate different PHYs and services, which address the needs of different environ-
ments. The standard is designed to accommodate either Time Division Duplexing (TDD) or Frequency 
Division Duplexing (FDD) deployments, allowing for both full and half-duplex terminals in the FDD case. 
[WIM200501]. 802.16a has a LOS radius of 50 km and a NLOS of 10 km or thereabouts, depending on the 
type of obstacles in the topography. WiMAX is the marketing name of the IEEE 802.16 standard.

The MAC was designed specifi cally for the PMP wireless access environment. It supports higher layer or 
transport protocols such as ATM, Ethernet, or IP, and is designed to easily accommodate future protocols 
that have not yet been developed. The MAC is designed for very high bit rates (up to 268 Mbps each way) 
of the truly broadband physical layer, while delivering  ATM compatible QoS, UGS (Unsolicited Grant 
Service), rtPS (real-time Polling Service), nrtPS (nonreal-time Polling Service), and Best Effort services. 
The frame structure allows terminals to be dynamically assigned uplink and downlink burst profi les ac-
cording to their link conditions. This allows a trade-off between capacity and robustness in real-time, and 
provides roughly a two times increase in capacity on average when compared to nonadaptive systems, while 
maintaining appropriate link availability. The 802.16 MAC uses a variable length Protocol Data Unit (PDU) 
along with a number of other concepts that greatly increase the effi ciency of the standard. Multiple MAC 
PDUs may be concatenated into a single burst to save PHY overhead. Additionally, multiple  Service Data 
Units (SDU) for the same service may be concatenated into a single MAC PDU, saving on MAC header 
overhead. Fragmentation allows very large SDUs to be sent across frame boundaries to guarantee the QoS of 
competing services. Payload header suppression can be used to reduce the overhead caused by the redundant 
portions of SDU headers. The MAC uses a self-correcting bandwidth request/grant scheme that eliminates 
the overhead and delay of acknowledgments, while simultaneously allowing better QoS handling than 
traditional acknowledgment schemes. Terminals have a variety of options available to them for requesting 
bandwidth depending upon the QoS and traffi c parameters of their services. Terminals can be polled indi-
vidually or in groups; they can steal bandwidth already allocated to make requests for more; they can signal 
the need to be polled, and they can piggyback requests for bandwidth. [WIM200501]. 
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A typical WiMAX network consists of a base station supported by a tower-mounted or on building-mounted 
antenna. The base station connects to the appropriate terrestrial network (PSTN, Internet, etc.) Applications 
include but are not limited to point-to-point communication between stations; point-to-multipoint com-
munication between the base station and clients; backhaul services for Wi-Fi (802.11) hotspots; broadband 
Internet services to home users; and, private line services for users in remote locations.

Table 2.13: Comparison between 802.11 and 802.16.

  802.11 ( Wi-Fi) 802.16 ( WiMAX) Technical Differences 

Range Maximum 100 meters. Access 
points needs to be added for 
greater coverage. 

Line-Of-Sight (LOS): Up to 50 
km. (NLOS): between 6 to 10 
km. Nonline-Of-Sight.

802.16 PHY tolerates greater multi-
path, delay spread (refl ections) via 
implementation of a 256 FFT vs. 64 
FFT for 802.11.

 Spectrum Uses unlicensed spectrum only. Uses licensed and unlicensed 
spectrum. 

802.16 ranges from 2 to 66 GHz 
and 802.11 is restricted to 2.4 and 
5.8 GHz. 

 Coverage Suitable for indoor use only. Designed for outdoor LOS and 
NLOS services. 

802.16 has superior system gain 
enabling it to penetrate through 
obstacles at longer distances. 

Scalability Number of users range from one 
to tens. Intended for LAN use. 
Channel sizes are fi xed at 20 
MHz. 

Number of users can be 
thousands. Channel sizes are 
fl exible (1.75 ~ 20 MHz). 

The MAC protocol of 802.16 uses 
Dynamic TDMA, but 802.11 uses 
CSMA/CA. 

 Data Rate 2.7 bps/Hz, maximum of 54 Mbps 
in a 20 MHz channel. 

5 bps/Hz, maximum of 100 
Mbps in a 20 MHz channel. 

802.16 can maintain ATM 
compatible QoS; UGS, rtPS, nrtPS 
and Best Effort; it can also support 
bit rates as high as 268 Mbps each 
way. 

 QoS Can only support best offer 
service. 

Supports multiple QoS and it is 
built into MAC. 

802.11: Uses CSMA/CA (wireless 
Ethernet). 802.16: Dynamic TDMA-
based MAC with no-demand 
bandwidth allocation.

Courtesy: WiMAX Forum 

 

(iii)  VoIP in 3G Cellular Networks
Over the past decade, mobile communications technology has evolved from First-Generation (1G) analog 
voice-only communications, to Second Generation (2G) digital, voice and data communications; the demand 
for more cost-effective and feature-enhanced mobile applications has led to the development of new-gen-
eration generation wireless systems (or simply 3G). State-of-the-art 3G handsets are designed to provide 
multimegabit Internet access with an “always on” feature and data rates of up to 2.048 Mbps [MAV200201]. 

In reference to cellular applications, the core network of traditional cellular systems is typically based on a 
circuit-switched architecture similar to that utilized in wireline networks. The wireless service providers are 
now in the process of evolving their core networks to IP technology. 

Wireless telecommunications started as a subdiscipline of wireline telephony, and the absence of global 
standards resulted in regional standardization. Two major mobile telecommunications standards have 
emerged: (1) Time Division Multiple Access/Code Division Multiple Access (TDMA/CDMA) developed by 
the Telecommunications Industry Association (TIA) in North America, and (2)  Global System for Mobile 
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Communications (GSM) developed by European Telecommunications Standards Institute (ETSI) in Europe. 
As one moves toward Third-Generation (3G) wireless services, there is a need to develop standards that are 
more global in scope [PAT200001].

In the late 1990s, there were discussions for the development of standards for a 3G mobile system with a 
core network based on evolutions of the GSM and an access network based on all the radio access technolo-
gies (i.e., both frequency- and time-division duplex modes) supported by the plethora of different carriers (in 
different countries). This project was called the  Third Generation Partnership Project (3GPP) [3GP200501]. 
Around the turn of this decade, the American National Standards Institute (ANSI) decided to establish the 
 Third-Generation Partnership Project 2 (3GPP2), a 3G partnership initiative for evolved ANSI/TIA/Elec-
tronics Industry Association (EIA) networks [3GP200502]. In addition, there also was the establishment of a 
strategic group called International Mobile Telecommunications-2000 (IMT-2000) within the International 
Telecommunication Union (ITU) [IMT200001], that focused its work on defi ning interfaces between 3G 
networks evolved from GSM on one hand and ANSI on the other, with the goal to enable seamless roam-
ing between 3GPP and 3GPP2 networks. Because of the worldwide (“universal”) roaming characteristic, 
3GPP started referring to 3G mobile systems as the  Universal Mobile Telecommunication System (UMTS) 
[BOS200101]. Since then, there has been advocacy for and progress toward an all-IP UMTS network ar-
chitecture. The “all-IP UMTS” specifi cations replaced the earlier circuit-switched transport technologies 
by utilizing packet-switched transport technologies and introduce multimedia support in the UMTS core 
network [BOS200101]. 

Figure 2.16 depicts some basic industry transition paths to 3G wireless. As implied in the previous paragraph, 
currently, the 3G world is split into two camps: (1) the cdma2000 which is an evolution of the IS-95 standard, 
and (2) the Wideband Code Division Multiple Access (W-CDMA)/Time Division Synchronous CDMA  
(TD-SCDMA)/Enhanced Data Rates for GSM evolution (EDGE) camp whose standards are all improvements 
of GSM, IS-136 and Packet Data Cellular (PDC)—these are all second-generation standards. In the U.S., 
 Verizon Wireless and Sprint PCS were the fi rst two carriers to develop 3G networks. The other major carriers 
have already advanced to the 2.5G technology with the vision to soon join the 3G community [MAV200201]. 
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Figure 2.16: Migration path(s) to 3G wireless networks.
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The original scope of 3GPP was to produce globally-applicable Technical Specifi cations and Technical 
Reports for a 3G Mobile System based on evolved GSM core networks and the radio access technologies 
that they support (i.e., Universal Terrestrial Radio Access (UTRA) both FDD and TDD modes). The scope 
was subsequently amended to include the maintenance and development of the GSM Technical Specifi ca-
tions and Technical Reports including evolved radio access technologies (e.g., General Packet Radio Service 
(GPRS) and EDGE) [TDD200501].

3GPP and 3GPP2 also address the issue of the limited data throughput capabilities of 2G/2.5G systems, 
motivating providers to start work on 3G wideband radio technologies that can provide higher data rates e.g., 
for Internet access, messaging, location-based services, etc. This work resulted in 3G wireless radio tech-
nologies that provide data rates of 144 kbps for vehicular, 384 kbps for pedestrian, and 2 Mbps for indoor 
environments, and meet the ITU IMT-2000 requirements. Now that the radio technology standards to sup-
port higher data rates have been developed, the providers are focusing on development of standards for all-IP 
networks [PAT200001]. 

 3GPP
The basic characteristics of an all-IP network are: end-to-end IP connectivity, distributed control and 
services, and gateways to legacy networks [PAT200001]. As noted earlier in this chapter, there are two major 
protocol suites for supporting VoIP: SIP, standardized by the IETF, and H.323, standardized by the ITU. It 
was decided in 3GPP to use only SIP as the call control protocol between terminals and the mobile network. 
Interworking with other H.323 terminals (e.g., fi xed H.323 hosts) is performed by a dedicated server in the 
network. New elements in this architecture, compared to a traditional 2G cellular network, are as follows 
(also see Figure 2.17) [BOS200101]: 

  Mobile Switching Center (MSC) Server: The MSC server controls all calls coming from circuit-switched 
mobile terminals and mobile terminated calls from a PSTN/GSM network to a circuit-switched termi-
nal. The MSC server interacts with the Media Gateway Control Function (MGCF) for calls to/from the 
PSTN. There is a functional split of the MSC, where the call control and services part is maintained in 
the MSC server, and the switch is replaced by an IP router (Media Gateway (MG)). This functional split 
reduces the deployment cost and guarantees the support of all existing services. 

  Call State Control Function (CSCF): The CSCF is a SIP server that provides/controls multimedia services 
for packet-switched (IP) terminals, both mobile and fi xed. 

  MG at the Universal Terrestrial Access Network (UTRAN) side: The MG transforms VoIP packets into UMTS 
radio frames. The MG is controlled by the MGCF by means of Media Gateway Control Protocol ITU 
H.248. The media gateway is added to fulfi ll requirement two. In Figure 2.17, the MG is drawn at the 
UTRAN side of the Iu interface, so the Iu interface, between the core network and UTRAN, is IP-based. 
The MG can also be located at the core network side of the Iu interface (without impact on the UTRAN.) 

  MG at the PSTN Side: All calls coming from the PSTN are translated to VoIP calls for transport in the 
UMTS core network. This MG is controlled by the MGCF using the ITU H.248 protocol.

  Signaling Gateway (SG): An SG relays all call-related signaling to/from the PSTN/UTRAN on an IP bearer 
and sends the signaling data to the MGCF. The SG does not perform any translation at the signaling level. 

  MGCF: The fi rst task of the MGCF is to control the MGs via H.248. Also, the MGCF performs translation 
at the call control signaling level between ISDN User Part (ISUP) signaling, used in the PSTN, and SIP 
signaling, used in the UMTS multimedia domain. 

  Home Subscriber Server (HSS): The HSS is the extension of the Home Location Register (HLR) database 
with the subscribers’ multimedia profi le data. 
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For the transport of data traffi c, UMTS uses the General-Packet Radio Service (GPRS) network. For voice 
calls, there are two options: for packet switched mobile terminals, voice data is transported over the GPRS 
network using the GPRS Tunneling Protocol (GTP) on top of IP; all mobility is solved by the GPRS proto-
cols. For circuit-switched mobile terminals, voice samples are transported over IP between the MGs using 
the Iu Frame Protocol; in the latter case there is no tunneling, hence, mobility has to be solved in a different 
way, namely by media gateway handovers. 

SCP 
HLR 

SG 
MGC 

RNC 

SGSN 

UTRAN = Universal Terrestrial Access Network 
RNC = Radio Network Controller 
CSCF = Call State Control Function 
SG = Signaling Gateway 
MG = Media Gateway 
MSC = Mobile Switching Center 

SGSN = Serving GPRS Support Node 
SCP = Service Control Point 
HLR = Home Location Register 
MGC = Media Gateway Controller 
GGSN = Gateway GPRS Support Node 
GPRS = General Packet Radio Service 

Signaling interfaces 
Data transfer interfaces 
Interfaces to the  
   service environment 

CSCF 

GGSN 

MSC 
Server 

MG 

MG 

SG 

MG 

IP Backbone 

lu (CS) 

lu (PS) 

UTRAN 

PSTN 

Multimedia 
Call Server 

External 
IP Network 

Home Service 
Environment 

Courtesy:  L. Bos and S. Leroy 

Figure 2.17: An  all-IP 3G cellular service.

An essential architectural principle of the 3GPP framework is to provide separation of service control from 
connection control. 3GPP started with GPRS as the core packet network, and overlaid it with call control 
and gateway functions required for supporting VoIP and other multimedia services. The functions are pro-
vided via IETF-developed protocols to maintain compatibility with the industry direction in all-IP networks. 
To support VoIP, call control functions (analogous to call control in a circuit-switched environment) are 
provided by the Call State Control Function (CSCF) (refer back to Figure 2.17). The mobile terminal com-
municates with the CSCF via SIP protocols. The CSCF performs call control functions, service switching 
functions, address translation functions, and vocoder negotiation functions. For communication to the Public 
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Switched Telephone Network (PSTN) and legacy networks, PSTN gateways are utilized. To support roaming 
to 2G wireless networks, roaming gateway functions are also provided. The Serving GPRS Support Node 
(SGSN) uses existing GSM registration and authentication schemes to verify the identity of the data user. 
This makes the SGSN access-technology-dependent. The GPRS HLR is enhanced for services that use IP 
protocols. The data terminal makes itself known to the packet network by doing a “GPRS-attach.” The IP 
address is anchored in the GPRS gateway node, GGSN, during the entire data session. This limits the mobil-
ity of the data terminal to within GPRS-based networks. To provide mobility with other networks a MIP 
Foreign Agent (FA) can be incorporated in the GGSN [PAT200001].

3G Release 1999 was the fi rst release of the  3GPP specifi cations; it was essentially a consolidation of the 
underlying GSM specifi cations and the development of the new UTRAN radio access network. The founda-
tions were laid for future high-speed traffi c transfer in both circuit-switched and packet-switched modes. 
That release was followed over the years by Release 4, 5, and 6 [TDD200501]. Release 1999 was an introduc-
tory specifi cation on the architecture of the UMTS network. According to Release 1999, UMTS is composed 
by a UTRAN and two core networks (circuit-switched core-network [CS-CN] and packet-switched core-
network [PS-CN]), which link up to services networks such as the PSTN and the Internet. Thus, using both 
traditional circuit-switched and modern packet-switched networks,  UMTS Release 1999 supports various 
services including voice, data (fax, SMS), and Internet access. Later on, Release 4 adapted to the same archi-
tecture adds more services to the UMTS network. The co-existence of two core networks however, signifi ed 
many limitations compared to competitive 3G systems, especially in video/multimedia services. Release 5 
was a solution to these limitations that came along to modernize the UMTS architecture currently employed 
in 3G networks around the world. In this fi nal phase, the Packet-Switched Core-Network (PS-CN) domi-
nates over the Circuit-Switched Core-Network (CS-CN) and takes the responsibility of telephony services. 
Systems based on UMTS Release 5 have much lower infrastructure and maintenance costs and provide 
enhanced services. Release 6 added additional capabilities [MAV200201].

As seen at the macro level in Figure 2.18, a new component is added to the basic UMTS architecture: the 
supplementary IP Multimedia Subsystem (IMS) will support both telephony and multimedia services. The 
IMS’ role in the UMTS architecture is to interact both with the PSTN and the Internet to provide all types 
of multimedia services to users. The   CSCF element in the IMS infrastructure is responsible for signal-
ing messages between all IMS components in order to control multimedia sessions originated by the user. 
Consequently, there is a Proxy-CSCF (P-CSCF), an Interrogating-CSCF (I-CSCF) and a Serving-CSCF 
(S-CSCF), all responsible for particular signaling functions using SIP. The P-CSCF’s responsibility is to act 
as the QoS enforcement point and to provide local control for emergency services. I-CSCF is an optional 
component that interacts with the HSS to fi nd the location of the S-CSCF (it is optional because the P-CSCF 
can be set up to negotiate directly with the S-CSCF). The S-CSCF controls all the session management 
functions for the IMS. Depending on the capabilities of the IMS and the capacity requirements, there may 
be more than one S-CSCF node while others can be eventually added to the system. The function of HSS is 
to handle all user information such as subscription and location queries. HSS communicates with the CSCFs 
via an IP-based protocol called Cx interface; all other IMS components interact with each other via SIP. The 
Media Gateway Control Function (  MGCF) is in charge of controlling one or more MGs; the MGCF interacts 
with the S-CSCF and the Transport Signaling Gateway (T-SGW). MGs are bit processors for end to end us-
ers; their function is to convert PCM in the PSTN to IP-based formats and vice versa. Finally, the T-SGW is 
included in the IMS because of the need to convert Signaling System Number 7 (SS7) to IP since the PSTN 
is only SS7-compatible [MAV200201].
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Figure 2.18:   UMTS release 5 basic architecture.

3GPP2
 3GPP2 has also undertaken the work to enhance the IP architecture for multimedia services (including 
voice). The approach here is to capitalize on the synergies of Internet technologies and use a single network 
for all services. 3GPP2 has created a new packet data architecture building on the CDMA 2G and 3G air in-
terface data services. 3GPP2 has taken advantage of 3G high data rates and existing work in IETF on MIP to 
enhance the network architecture to provide IP capabilities. One advantage of using globally accepted-IETF 
protocols is ease in interworking and roaming with other IP networks. The other major advantage is that it 
can provide private network access (virtual private networking) via a MIP tunnel with IP security [PAT200001].

In the 3GPP2 architecture, IP connectivity reaches all the way to the Base Station Transceiver (BTS). Both 
the Base Station Controller (BSC) and BTS are contained in the IP-based radio access network node. This 
means that the BSC will be a router-based IP node containing some critical radio control functions (e.g., 
power control, soft handoff frame selection). The remaining control functions, such as call/session control, 
mobility management, and gateway functions, are moved out to the managed IP network. This allows for a 
distributed and modular control architecture. Since much of the communication will be between wireless and 
legacy terminals, gateway functions are provided for roaming to 2G wireless networks and interworking with 
the PSTN. In the 3GPP2 architecture, the mobile terminal uses Mobile-IP-based protocols to identify itself. 
The Packet Data Serving Node (PDSN) contains a   MIP Foreign Agent (FA) functionality. When the mobile 
terminal attaches to the FA, the FA establishes a Mobile IP tunnel to the   Home Agent (HA) and sends a 
registration message to the HA. The HA accesses the   Authorization, Authentication, and Accounting (AAA) 
server to authenticate the mobile terminal. The IP address of the mobile terminal is now anchored in the HA 
for the duration of the data session. The data device connected to the mobile terminal can be handed over to 
any other access device that supports Mobile IP. Thus, this approach can provide mobility across different 
access networks (wireless, wireline, etc.). However, since it essentially uses address translation to provide 
mobility, it cannot do fast handoff due to the latency of address updates from distant agents [PAT200001].

Comparison
In provision of mobility for IP sessions, the 3GPP and 3GPP2 architectures are different because of the un-
derlying base networks and evolution strategies. In 3GPP, GPRS-based mobility was already defi ned, so the 
IP network enhancements were considered on top of GPRS. On the other hand, 3GPP2 needed to develop a 
mobility mechanism for packet data since one did not exist previously. As noted, 3GPP2 has decided to use 
MIP as the basis for packet data mobility [PAT200001]. 
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To illustrate the similarities and differences of the two approaches, mobility needs to be separated into three 
levels: air interface mobility, link-level mobility, and network-level mobility. Air interface mobility supports 
cell-to-cell handoff within a radio access network. Link-level mobility maintains a Point-to-Point Proto-
col (PPP) context across multiple radio access networks. Network-level mobility provides mobility across 
networks. In both approaches, air interface mobility is handled in the radio access network. Air interface 
mobility is specifi c to the radio technology, so harmonization of the two depends on the harmonization ef-
forts underway for global CDMA. In 3GPP, link-level mobility is handled by GTP; this protocol is used to 
provide mobility to other 3GPP-defi ned networks. The 3GPP architecture also provides an option in which 
an FA may be located in the GGSN. This allows roaming from GPRS-based networks to other IP access 
networks. In 3GPP2, link-level mobility is provided by defi ning a tunneling protocol as an extension of MIP. 
The MIP architecture allows the mobile device to have a point of presence and roam across any IP network. 
Registration and authentication in the 3GPP architecture for access and data networks are integrated and uti-
lize the schemes used for wireless. In the 3GPP2 architecture, the registration and authentication for access 
and data networks are performed separately. For a data network, authentication and registration as defi ned in 
MIP is used; hence, the data architecture is access-independent [PAT200001]. 

2.5.2  Wireless VoIP Service Offering Dynamics
Market research has shown that mobile consumers are interested in being able to hold conversations at 
reduced fees, conduct web conferences, receive live music and/or video clips from radio/TV stations, and 
interact with each other using Multimedia Messages (MMS) [MAV200201]. This section looks at some of the 
possible strategies and/or approaches planned by mobile operators to supports these evolving needs. 

  3G Operators
Industry observers have suggested that VoW using technologies such as  Wi-Fi and  WiMAX could shift 
customers and revenue away from cellular carriers; making VoIP available over the cellular network is way 
of addressing this potential revenue loss. After many delays, 3G networks are now being rolled out. Any 
technology hoping to position itself as the next generation of networking needs to support voice services 
in general and VoIP in particular; after all, voice services continue to represent the largest portion of any 
carrier’s income (in the range of 80% of their revenue, as an average—naturally, new multimedia-oriented 
services are also emerging20). This is motivating 3G cellular operators to look in new directions. 

3G wireless networks offer all the normal mobile telephony services plus “high speed” data access. 3G op-
erators may initially limit data access to their own branded data services or at least price open Internet access 
signifi cantly higher than access to their own traditional data services. The mobile market, however, is very 
competitive, and there consumer and business requirements for access to the open Internet. In fact, fl at rate 
bundles for data access services are already available in some markets. This data-channel access can be used 
to support VoIP services [TUR200501]. Wireless operators that are looking to continue to displace wireline 
voice revenues as their business posture need to reduce their overall delivery costs as users move from 2G 
 TDM to 3G VoIP [WIW200501]. 

For example, equipment upgrades can introduce high-speed data capabilities to  UMTS networks. Specifi -
cally, new technologies becoming available at press time enables carriers to provide new “blended lifestyle 
services” via any wireline, wireless, or Wi-Fi/WiMax endpoint by providing a variety of 3GPP IMS func-
tional elements (as discussed in the previous subsections), including the call session control functions, the 
media resource function controller, the policy decision function, and the breakout gateway control function. 

20 Some refer to the cell phone screen as the 3rd screen; the fi rst screen being the TV set, and the second screen being the PC. This third 
screen opens up the possibility for new multimedia services.
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Because this equipment expands the data channel on 3G cellular networks, these upgrades also lays the 
foundation for operators to introduce VoIP and more advanced multimedia services on their mobile networks 
(here one can transmit the IP-voice datagrams over the data channel.)  VoIP over 3G gives operators the 
ability to support a greater number of voice users at a lower cost, in turn helping to ensure that voice services 
can continue to be delivered profi tably. Some researchers estimate that 3G wireless can deliver voice by way 
of VoIP for a quarter of the cost per minute compared to 2G TDM methods [WIW200501]. 

For mobile operators that have invested heavily in 2G and 3G cellular networks there may be relatively little 
incentive to offer VoIP services according to observers (their existing networks already deliver better-quality 
voice services at lower cost than VoIP can achieve today.)  However, VoIP may look more attractive to those 
service providers seeking to bypass mobile operators’ traditional voice tariffs, particularly if an opportunity 
to undercut those tariffs using VoIP arises due to signifi cant drops in 3G data pricing. A number of mobile 
operators have launched unlimited-use data tariffs that could make them vulnerable to customers using VoIP 
to cut their spend [3GS200501]. 3G service-provider VoIP offerings could appear in the U.S. in the 2008 or 
2009 timeframe. That would come after the operators upgrades their 2.5G/3G networks. For example, up-
grades to   1xEV-DO provide peak data rates of about 1.8 Mbps, compared to typical rates of 300–400 Kbps 
for the current generation of 1xEV-DO [MOB200501], [MOB200502]. 

Calculations of the threat to 3G revenues from broadband wireless (  WiMAX) have focused mainly on data, 
but as some 3G carriers start to put VoIP in a more central position in their strategies, they could fi nd that 
this service segment is also impacted. The 3G UMTS and CDMA technologies may have been the fi rst to 
promise both voice and broadband-class data on one network and device, but the emergence of usable VoW 
has moved formerly data-only approaches into this space too. A potential early limit on VoIP over 3G data 
access could be the limited upstream capability of the initial 3G services. W-CDMA can deliver up to 384 
kbps downstream but only 64 kbps upstream; it is preferable to have data rates exceeding 64 kbps, but if 
that is all that is available one can make-do for most VoIP services [TUR200501]. Roadmaps for data networks 
such as   CDMA EVDO (Evolution–Data Only) and UMTS’ data only strand, TDD21 now include VoIP 
[WIW200501]. 

The shift is already visible in the CDMA market, even without taking challenges from broadband wireless 
into account. The next upgrade of EV-DO (Evolution—Data Only) equipment, called Rev A, which 
promises peak data rates of 3.1 Mbps, would also carry VoIP, and so could perhaps make a further 
upgrade to the next CDMA generation,   EV-DV (Evolution—Data and Voice) unnecessary. Rev A equip-
ment was expected to start shipping by press time and, although EV-DO with VoIP will take advantage 
of the spectral effi ciencies of CDMA less well than EV-DV, this will be outweighed by early availability 
and lower prices [WIW200501].

In the UMTS space, manufacturers have already developed  TDD mobile handset offering VoIP as well as the 
usual broadband packet based services and providers have completed the fi rst successful transmission 
of a call from a mobile VoIP handset over UMTS TDD, and claim the network is ideal for voice because 
it features high capacity, low latency, and low power requirements. Their services will be more compel-
ling if they can offer voice and, therefore, they will be less likely to opt for a pure IP solution such as 
802.16 instead of TDD. TDD-ready handsets were becoming commercially available as of press time 
[WIW200501]. 

21 UMTS TDD Mobile Broadband technology is a packet data implementation of the international 3GPP UMTS standard. Unlike W-
CDMA, which uses  Frequency Division Duplex (FDD), UMTS TDD is designed to work in a single unpaired frequency band. One 
of the largest benefi ts of using TDD is that TDD supports variable asymmetry, meaning an operator can dictate how much capacity 
is allocated to downlink versus uplink. As the traffi c patterns for data typically heavily favor the downlink, this results in better use 
of spectrum assets and higher effi ciency [TDD200501].
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Hotspot/WiMAX Operators
For operators considering deployment of broadband wireless access technologies (e.g., WiMAX), being able 
to offer VoIP could strengthen the business case for investing in such networks by moving operators beyond 
a focus on low-margin Internet access. Fixed/wireline operators have shown interest in use of wireless VoIP 
in trying to defend against fi xed mobile substitution by developing services that combine VoIP over WLAN/
hotspot/WiMAX with cellular voice elsewhere [3GS200501], [TUR200501]. 

Even when offering VoIP, the 3G industry can no longer expect to take all the voice revenue for itself. The 
promise of this business model could be severely disrupted by VoIP over WiMAX, especially for operators 
that are now relying primarily on low-cost-voice-minutes for growth. In the IP world, users will become 
increasingly accustomed to having inexpensive voice bundled into an overall fl at rate package, and operator 
delivery costs will be even lower than for 3G. Their current hopes related to ARPU (Average Revenue Per 
Unit) from voice could be severely threatened by broadband wireless options as these become more seam-
less and quality assured than the current voice over Wi-Fi options [WIW200501]. 

    Fixed-Mobile Convergence (FMC) Operators
Recently, there has been interest in Fixed-Mobile Convergence (FMC). Mobile network operators plan to 
leverage emerging IMS service platforms to deliver “one phone, one number” telephony over both fi xed 
and mobile infrastructure. This means a mobile handset will use 2G/3G mobile infrastructure when the 
user is outdoors and VoIP over Wi-Fi when the user is at work or at home. Mobile operators see IMS and 
FMC as an opportunity to take additional market share from traditional fi xed line operators. However, once 
high speed Internet access becomes available on mobile phones, a plethora of VoIP services will follow 
[TUR200501]. 

Most telephone calls originate from inside buildings, where cellular mobile coverage is poorest. As such, 
residential users are often forced to keep their fi xed-line services for use when they are at home; the same 
applies in offi ce buildings, with the added problem that wireless operators have not been in a position to 
offer the Centrex or  PBX features that enterprises require. In theory, however, that could change with the 
advent of IMS and FMC [TUR200501]. 

In Japan, for example,  NTT DoCoMo is trying to address the coverage problem in major offi ce buildings 
with nano-cells and in-building repeaters, but the more widely applicable approach is to introduce FMC 
services for business and residential users based on IMS. Fixed-mobile convergence is attractive to opera-
tors because IMS is a logical extension of their existing networks and the resulting services make the most 
of operators’ installed base. In addition, FMC represents an opportunity for the mobile operator to sell new 
services directly to enterprises: currently most mobile services are sold to consumers, even though the bills 
are often paid by enterprises; establishing a direct relationship with the enterprise opens new service and 
new revenue possibilities for mobile operators [TUR200501]. 

To enable converged handsets FMC relies on broadband Internet access for the “fi xed” portion and WLANs 
now and WiMAX in the future for the “mobile” portion.  WLANs are deployed at a large percentage of en-
terprises and home-based Wi-Fi setups are spreading rapidly. Broadband Internet access is also available in 
thousands of public hotspots. The fi rst round of convergence depends upon handsets that support 2G, 3G and 
Wi-Fi connections on the same phone. Mobile operators then use an IMS platform to transparently combine 
regular mobile service on their 2G or 3G mobile network with VoIP services over Wi-Fi and/or fi xed broad-
band access. Because of the fact that the mobile portion of FMC uses the existing mobile number and the 
existing mobile switching network elements, mobile operators have an advantage [TUR200501]. 

Minoli_Book.indb   104Minoli_Book.indb   104 3/9/2006   6:30:11 PM3/9/2006   6:30:11 PM



Basic VoP/VoIP Concepts

105

Without broadband Internet access, the VoIP service providers are less of a threat to mobile operators’ FMC 
services. The business proposition of fi xed-mobile convergence is to hit the sweet spot of high convenience 
and low cost [TUR200501]. VoIP vendors will be in a better position to provide their own FMC if WiMAX 
delivers on its promise of wireless broadband Internet access; however, widespread WiMAX deployments 
is expected to take a number of years. Instead, the VoIP competitive threat may be enabled by the mobile 
operators’ own data services [TUR200501]. 

Providers of   Internet VoIP Services
At press time there were numerous VoIP services available over the public Internet for wireline environ-
ments and, more recently, for wireless environments. We call these providers “independent VoIP providers”. 
Skype was one of the most prominent providers in the wireline space (by press time it had grown to be the 
world’s largest VoIP provider with 38 million registered users—now part of Ebay). To illustrate the trend 
toward wireless VoIP services by the independent providers we make note that Skype has worked with Mo-
torola to embed the Skype client in Motorola’s    Wi-Fi-enabled mobile phones; this development means that 
Internet VoIP service providers could be cutting into mobile operators’ consumer voice revenues—especially 
roaming charges—in the immediate future [TUR200501]. Independent VoIP services are a looming threat for 
3G mobile operators. European providers are at greater risk than their U.S. counterparts because European 
per-minute rates are higher, roaming is more frequent, and fl at-rate bundles of minutes are still a fairly new 
concept. FMC will afford VoIP service providers a viable competitive advantage for the foreseeable future. 
But as 3G data services get better, Wi-Fi continues to spread, and WiMAX emerges, the VoIP service provid-
ers will begin to compete head-to-head with the mobile operators offering their own converged services 
[TUR200501]. 

Speculations About the Future: Mobile Operators of the 2010 Decade
There is a realization that there is an advantage for mobile operators to roll-out FMC services as quickly 
as possible to build a strong base and a strong brand while their competitive advantage survives. Further 
out, however, there will be some business decisions to be made. The following speculations on what future 
(industry) positioning may occur are based on [TUR200501].

The services layer (fi rst content delivery and then converged telephony) will become independent of the 
underlying network (broadband Internet access). Ultimately, a voice connection between two people on 
the open Internet may not incur any extra charge beyond that for Internet access. Users will pay for mobile 
broadband Internet access, and then acquire additional content, products and services on the open market 
just as they do today for  web-based services: they get broadband access in their home but acquire most of 
their content and services from other brands over the Internet (including but not limited to Google, Yahoo, 
Amazon, eBay, and Vonage) and not from their broadband access provider. 

Eventually, mobile operators will need to split their integrated mobile telephony business into a mobile ac-
cess business and one or more Internet brands. A FMC service will take them beyond their own networks. 
Can this be built into an independent VoIP service that works anywhere? And, can the walled garden content 
services be built into Internet brands? Operators need to consider their brand development, so that when the 
broadband Internet is truly mobile-accessible, they have built Internet brands in addition to (and separable 
from) their telephony brand. At this juncture, mobile operators have an opportunity to profi t from an aggres-
sive rollout of FMC services, with their inherent but short-term advantages, to build a global branded VoIP 
service that can survive when competing VoIP providers start leveraging mobile broadband Internet access. 
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2.5.3 Wireless Summary
This brief foray into the wireless arena shows that there is a lot of interest and opportunity for VoIP. In 
particular, VoIP needs to be commercially robust and it needs to be a 3G service as we defi ned the term in 
Chapter 1. IPv6 is an enabling technology in support of that 3G VoIP goal.

2.6 Conclusion
This chapter presented a short overview of some key concepts in VoIP. The chapter is not intended to be 
exhaustive and the interested reader is encouraged to consult other references, as needed. 

 

Minoli_Book.indb   106Minoli_Book.indb   106 3/9/2006   6:30:12 PM3/9/2006   6:30:12 PM



107

C H A P T E R  3
Basic VoIP Signaling and SIP Concepts  

3.1 Introduction
This chapter describes the  Session Initiation Protocol (SIP) in some detail. The anticipation is that an SIP will 
play a key role in 3G VoIP networks based on IPv6; hence, the coverage we allocate to this topic. An SIP is 
an application-layer control (signaling) protocol for creating, modifying, and terminating sessions with one 
or more participants. These sessions include Internet telephone calls, multimedia distribution, and multimedia 
conferences. SIP invitations used to create sessions carry session descriptions that allow participants to agree 
on a set of compatible media types. SIP makes use of elements called proxy servers to help route requests to the 
user’s current location, authenticate and authorize users for services, implement provider call-routing policies, 
and provide features to users. SIP also provides a registration function that allows users to upload their current 
locations for use by proxy servers. SIP runs on top of several different transport protocols. Besides basic VoIP 
telephony, SIP can support presence/proximity, multimodal and collaborative communications.

We stressed in Chapter 2 the importance of signaling. Signaling is a critical constituent element of a truly-
global VoIP construct that is able to support public telephony. SIP can in principle be leveraged to this end. 
This (relatively) new protocol is described in a series of IETF RFCs, as shown in Table 3.1:

Table 3.1: IETF SIP RFCs.

RFC 3261 SIP: Session Initiation Protocol, J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. 
Sparks, M. Handley, E. Schooler (June 2002) (Obsoletes RFC 2543) (Updated by RFC 3265, RFC 3853)

RFC 3262 Reliability of Provisional Responses in Session Initiation Protocol (SIP), J. Rosenberg, H. Schulzrinne 
(June 2002) (Obsoletes RFC 2543) 

RFC 3263 Session Initiation Protocol (SIP): Locating SIP Servers, J. Rosenberg, H. Schulzrinne (June 2002) 
(Obsoletes RFC 2543) 

RFC 3264 An Offer/Answer Model with Session Description Protocol (SDP), J. Rosenberg, H. Schulzrinne 
(June 2002) (Obsoletes RFC 2543) 

RFC 3265 Session Initiation Protocol (SIP)-Specifi c Event Notifi cation, A. B. Roach (June 2002) 
(Obsoletes RFC 2543) (Updates RFC 3261)

 

While the protocol linkage between SIP and IPv6 is a pragmatic one at this juncture, what makes the two 
have a symbiotic affi nity, at least in the view of the author, is that IPv6 is a “replacement” (and not a trivial 
one at that) of the current global IP infrastructure; similarly, SIP may well be a replacement for the current 
ISDN-era signaling, ITU-T’s H.323 being a derivative of ISDN signaling [MIN199401]. One perspective on 
this is that SIP could help make VoIP ubiquitous, but in fact, for VoIP to be able to support a global user 
population in a seamless manner, the larger address space and the fl ow mechanisms of IPv6 are needed (note 
that the traditional   E.164 ISDN-era addressing scheme allows for 15 digits or 1015 (a quadrillion) unique 
combinations (at least mathematically)—that’s a million times larger than what IPv4 allows.
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This treatment is based on IETF RFC 3261 [SCH200201]. This discussion is strictly for pedagogical purposes. 
All normative and/or development work should make direct and explicit reference to the latest IETF/RFC 
documentation. SIP is a sophisticated multipurpose protocol; hence, it is fairly extensive as seen anecdotally by 
the size of this chapter (the chapter actually only provides a summary of RFC 3261, and, furthermore, does 
not cover the extensive normative apparatus listed in Appendix B of Chapter 1 or even the short list of the 
table above). The reader focused completely and exclusively on IPv6 issues may choose to skip this chapter 
on fi rst reading without a loss in continuity.

3.2 Overview
There are many applications of the Internet that require the creation and management of a session, where 
a session is considered an exchange of data between an association of participants. The implementation of 
these applications is complicated by the practices of participants: users may move between endpoints, they 
may be addressable by multiple names, and they may communicate in several different media—sometimes 
simultaneously. Numerous protocols have been developed that carry various forms of real-time multimedia 
session data such as voice, video, or text messages. SIP works in concert with these protocols by enabling 
Internet endpoints (called user agents) to discover one another and to agree on a characterization of a session 
they would like to share. For locating prospective session participants, and for other functions, SIP enables 
the creation of an infrastructure of network hosts (called proxy servers) to which user agents can send 
registrations, invitations to sessions, and other requests. SIP is an agile, general-purpose tool for creating, 
modifying, and terminating sessions that works independently of underlying transport protocols and without 
dependency on the type of session that is being established. 

3.3   Fundamental SIP Functionality
SIP is an application-layer control protocol that enables one to establish, modify, and terminate multimedia ses-
sions (conferences) such as Internet telephony calls. SIP can also invite participants to already existing sessions, 
such as multicast conferences. Media can be added to (and removed from) an existing session. SIP transparently 
supports name mapping and redirection services, which supports personal mobility—users can maintain a single 
externally-visible identifi er regardless of their network location. SIP works with both IPv4 and IPv6. 

SIP supports fi ve facets related to establishing and terminating multimedia communications:

User location—determination of the end system to be used for communication;
User availability—determination of the willingness of the called party to engage in communications;
User capabilities—determination of the media and media parameters to be used;
Session setup—“ringing,” establishment of session parameters at both called and calling party; and,
Session management—including transfer and termination of sessions, modifying session parameters, 
and invoking services.

SIP is not a vertically-integrated communications system. Rather, SIP is a component that can be used with 
other IETF protocols to build a complete multimedia architecture. Typically, these architectures include 
protocols such as the   Real-Time Transport Protocol (RTP) (RFC 1889) for transporting real-time data and 
providing QoS feedback, the Real-Time Streaming Protocol (RTSP) (RFC 2326) for controlling delivery of 
streaming media, the Media Gateway Control Protocol (  MEGACO) (RFC 3015) for controlling gateways to 
the   Public Switched Telephone Network (PSTN), and, the Session Description Protocol (SDP) (RFC 2327) 
for describing multimedia sessions. Therefore, SIP should be used in conjunction with other protocols in 
order to provide complete services to the users; however, the basic functionality and operation of SIP does 
not depend on any of these protocols. 

It should be noted that SIP does not provide services. Rather, SIP provides primitives that can be used to im-
plement different services. For example, SIP can locate a user and deliver an opaque object to his/her current 

•
•
•
•
•
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location. If this primitive is used to deliver a session description written in SDP, for instance, the endpoints 
can agree on the parameters of a session. If the same primitive is used to deliver a photo of the caller as well 
as the session description, a “caller ID” service can be easily implemented. As this example shows, a single 
primitive is typically used to provide several different services. 

Furthermore, SIP does not offer conference control services such as fl oor control or voting, and does not 
prescribe how a conference is to be managed. SIP can be used to initiate a session that uses some other 
conference control protocol. Since SIP messages and the sessions they establish can pass through entirely 
different networks, SIP cannot, and does not, provide any kind of network resource reservation capabilities. 

The nature of the services provided make security considerations particularly important. To that end, SIP 
provides a suite of security services, that include denial-of-service prevention, authentication (both user-to-
user and proxy-to-user), integrity protection, and encryption/privacy services. 

3.4 Overview of Operation
This section introduces the basic operations of SIP using simple examples (this section does not contain any 
normative statements). Some of the key protocol details are contained in the appendix to this chapter; addi-
tional low-level details are found in the RFC itself.

The fi rst example shows the basic functions of SIP: location of an end point, signal of a desire to communi-
cate, negotiation of session parameters to establish the session, and teardown of the session once established. 

INVITE F2 
INVITE F4 

INVITE F1 

100 Trying F3 

Alice’s 
Softphone 

Bob’s 
SIP Phone 

biloxi.com 
proxy 

atlanta.com 
proxy 

180 Ringing F8 

200 OK F11 
200 OK F10 

200 OK F14 

ACK F12 

Media Session 

BYE F13 

200 OK F9 

180 Ringing F7 
180 Ringing F6 

100 Trying F5 

Figure 3.1: SIP   session setup example with SIP trapezoid.
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Alice “calls” Bob using his SIP identity, a type of Uniform Resource Identifi er (URI) called an SIP URI. It 
has a similar form to an email address, typically containing a username and a host name. In this case, it is sip:
bob@biloxi.com, where biloxi.com is the domain of Bob’s SIP service provider. Alice has a SIP URI of sip:
alice@atlanta.com. Alice might have typed in Bob’s URI or perhaps clicked on a hyperlink or an entry in an 
address book. SIP also provides a secure URI, called a SIPS URI. An example would be sips:bob@biloxi.com. 
A call made to a SIPS URI guarantees that secure, encrypted transport (namely, TLS-based communication) 
is used to carry all SIP messages from the caller to the domain of the callee. From there, the request is sent 
securely to the callee, but with security mechanisms that depend on the policy of the domain of the callee.

SIP is based on an HTTP-like request/response transaction model. Each transaction consists of a request that 
invokes a particular method, or function, on the server and at least one response. In this example, the trans-
action begins with Alice’s softphone sending an INVITE request addressed to Bob’s SIP URI. INVITE is an 
example of a SIP method that specifi es the action that the requestor (Alice) wants the server (Bob) to take. 
The INVITE request contains a number of header fi elds. Header fi elds are named attributes that provide 
additional information about a message. The ones present in an INVITE include a unique identifi er for the 
call, the destination address, Alice’s address, and information about the type of session that Alice wishes to 
establish with Bob. The INVITE (message F1 in Figure 3.1) might look like this:

   INVITE sip:bob@biloxi.com SIP/2.0
   Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bK776asdhds
   Max-Forwards: 70
   To: Bob <sip:bob@biloxi.com>
   From: Alice <sip:alice@atlanta.com>;tag=1928301774
   Call-ID: a84b4c76e66710@pc33.atlanta.com
   CSeq: 314159 INVITE
   Contact: <sip:alice@pc33.atlanta.com>
   Content-Type: application/sdp
   Content-Length: 142

   (Alice’s SDP not shown)

The fi rst line of the text-encoded message contains the method name (INVITE). The lines that follow are a list 
of header fi elds. This example contains a minimum required set. The header fi elds are briefl y described below.

 Via contains the address (pc33.atlanta.com) at which Alice is expecting to receive responses to this 
request. It also contains a branch parameter that identifi es this transaction.

 To contains a display name (Bob) and a SIP or SIPS URI (sip:bob@biloxi.com) towards which the 
request was originally directed. Display names are described in RFC 2822.

 From also contains a display name (Alice) and a SIP or SIPS URI (sip:alice@atlanta.com) that indicate 
the originator of the request. This header fi eld also has a tag parameter containing a random string 
(1928301774) that was added to the URI by the softphone. It is used for identifi cation purposes.

 Call-ID contains a globally unique identifi er for this call, generated by the combination of a random 
string and the softphone’s host name or IP address. The combination of the To tag, From tag, and 
Call-ID completely defi nes a peer-to-peer SIP relationship between Alice and Bob and is referred to 
as a dialog.

 CSeq (Command Sequence) contains an integer and a method name. The CSeq number is incremented 
for each new request within a dialog and is a traditional sequence number.

 Contact contains a SIP or SIPS URI that represents a direct route to contact Alice, usually composed of 
a username at a Fully Qualifi ed Domain Name (FQDN). While an FQDN is preferred, many end 
systems do not have registered domain names, so IP addresses are permitted. While the Via header 
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fi eld tells other elements where to send the response, the Contact header fi eld tells other elements 
where to send future requests.

 Max-Forwards (not shown) serves to limit the number of hops a request can make on the way to its 
destination. It consists of an integer that is decremented by one at each hop.

Content-Type contains a description of the message body (not shown).
Content-Length contains an octet (byte) count of the message body.

The complete set of SIP header fi elds is defi ned in the RFC.

The details of the session, such as the type of media, codec, or sampling rate (e.g., as discussed in Chapter 2), 
are not described using SIP. Rather, the body of a SIP message contains a description of the session, encoded 
in some other protocol format; one such format is the Session Description Protocol (SDP) (RFC 2327). The 
SDP message (not shown in the example) is carried by the SIP message in a way that is analogous to a docu-
ment attachment being carried by an email message, or a web page being carried in an HTTP message.

Since the softphone does not know the location of Bob or the SIP server in the biloxi.com domain, the softphone 
sends the   INVITE to the SIP server that serves Alice’s domain, atlanta.com. The address of the atlanta.com SIP 
server could have been confi gured in Alice’s softphone, or it could have been discovered by DHCP, for example.

The atlanta.com SIP server is a type of SIP server known as a proxy server. A proxy server receives SIP re-
quests and forwards them on behalf of the requestor. In this example, the proxy server receives the INVITE 
request and sends a 100 (Trying) response back to Alice’s softphone. The 100 (Trying) response indicates 
that the INVITE has been received and that the proxy is working on her behalf to route the INVITE to the 
destination. Responses in SIP use a three-digit code followed by a descriptive phrase. This response contains 
the same To, From, Call-ID, CSeq and branch parameter in the Via as the INVITE, which allows Alice’s 
softphone to correlate this response to the sent INVITE. The atlanta.com proxy server locates the proxy 
server at biloxi.com, possibly by performing a particular type of DNS (Domain Name Service) lookup to 
fi nd the SIP server that serves the biloxi.com domain. As a result, it obtains the IP address of the biloxi.
com proxy server and forwards, or proxies, the INVITE request there. Before forwarding the request, the 
atlanta.com proxy server adds an additional Via header fi eld value that contains its own address (the INVITE 
already contains Alice’s address in the fi rst Via). The biloxi.com proxy server receives the INVITE and 
responds with a 100 (Trying) response back to the atlanta.com proxy server to indicate that it has received 
the INVITE and is processing the request. The proxy server consults a database, generically called a location 
service, that contains the current IP address of Bob. (We shall see in the next section how this database can 
be populated.) The biloxi.com proxy server adds another Via header fi eld value with its own address to the 
INVITE and proxies it to Bob’s SIP phone.

Bob’s SIP phone receives the INVITE and alerts Bob to the incoming call from Alice so that Bob can decide 
whether to answer the call, that is, Bob’s phone rings. Bob’s SIP phone indicates this in a 180 (Ringing) re-
sponse, which is routed back through the two proxies in the reverse direction. Each proxy uses the Via header 
fi eld to determine where to send the response and removes its own address from the top. As a result, although 
DNS and location service lookups were required to route the initial INVITE, the 180 (Ringing) response can 
be returned to the caller without lookups or without state being maintained in the proxies. This also has the 
desirable property that each proxy that sees the INVITE will also see all responses to the INVITE.

When Alice’s softphone receives the 180 (Ringing) response, it passes this information to Alice, perhaps us-
ing an audio ringback tone or by displaying a message on Alice’s screen.

In this example, Bob decides to answer the call. When he picks up the handset, his SIP phone sends a 200 
(OK) response to indicate that the call has been answered. The 200 (OK) contains a message body with the 
SDP media description of the type of session that Bob is willing to establish with Alice. As a result, there is 
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a two-phase exchange of SDP messages: Alice sent one to Bob, and Bob sent one back to Alice. This two-
phase exchange provides basic negotiation capabilities and is based on a simple offer/answer model of SDP 
exchange. If Bob did not wish to answer the call or was busy on another call, an error response would have 
been sent instead of the 200 (OK), which would have resulted in no media session being established. The 
200 (OK) (message F9 in Figure 3.1) might look like this as Bob sends it out:

   SIP/2.0 200 OK
   Via: SIP/2.0/UDP server10.biloxi.com
     ;branch=z9hG4bKnashds8;received=192.0.2.3
   Via: SIP/2.0/UDP bigbox3.site3.atlanta.com
     ;branch=z9hG4bK77ef4c2312983.1;received=192.0.2.2
   Via: SIP/2.0/UDP pc33.atlanta.com
     ;branch=z9hG4bK776asdhds ;received=192.0.2.1
   To: Bob <sip:bob@biloxi.com>;tag=a6c85cf
   From: Alice <sip:alice@atlanta.com>;tag=1928301774
   Call-ID: a84b4c76e66710@pc33.atlanta.com
   CSeq: 314159 INVITE
   Contact: <sip:bob@192.0.2.4>
   Content-Type: application/sdp
   Content-Length: 131

   (Bob’s SDP not shown)

The fi rst line of the response contains the response code (200) and the reason phrase (OK). The remaining 
lines contain header fi elds. The Via, To, From, Call-ID, and CSeq header fi elds are copied from the INVITE 
request. (There are three Via header fi eld values—one added by Alice’s SIP phone, one added by the atlanta.
com proxy, and one added by the biloxi.com proxy.) Bob’s SIP phone has added a tag parameter to the To 
header fi eld. This tag will be incorporated by both endpoints into the dialog and will be included in all future 
requests and responses in this call. The Contact header fi eld contains a URI with which Bob can be directly 
reached at his SIP phone. The Content-Type and Content-Length refer to the message body (not shown) that 
contains Bob’s SDP media information.

In addition to DNS and location service lookups shown in this example, proxy servers can make fl exible 
“routing decisions” to decide where to send a request. For example, if Bob’s SIP phone returned a 486 (Busy 
Here) response, the biloxi.com proxy server could proxy the INVITE to Bob’s voicemail server. A proxy 
server can also send an   INVITE to a number of locations at the same time. This type of parallel search is 
known as forking.

In this case, the 200 (OK) is routed back through the two proxies and is received by Alice’s softphone, which 
then stops the ringback tone and indicates that the call has been answered. Finally, Alice’s softphone sends 
an acknowledgment message, ACK, to Bob’s SIP phone to confi rm the reception of the fi nal response (200 
(OK)). In this example, the ACK is sent directly from Alice’s softphone to Bob’s SIP phone, bypassing the 
two proxies. This occurs because the endpoints have learned each other’s address from the Contact header 
fi elds through the INVITE/200 (OK) exchange, which was not known when the initial INVITE was sent. 
The lookups performed by the two proxies are no longer needed, so the proxies drop out of the call fl ow. 
This completes the INVITE/200/ACK three-way handshake used to establish SIP sessions.

Alice and Bob’s media session has now begun, and they send media packets using the format to which they 
agreed in the exchange of SDP. In general, the end-to-end media packets take a different path from the SIP 
signaling messages.
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During the session, either Alice or Bob may decide to change the characteristics of the media session. This is 
accomplished by sending a re-INVITE containing a new media description. This re-INVITE references the 
existing dialog so that the other party knows that it is to modify an existing session instead of establishing a 
new session. The other party sends a 200 (OK) to accept the change. The requestor responds to the 200 (OK) 
with an ACK. If the other party does not accept the change, he sends an error response such as 488 (Not 
Acceptable Here), which also receives an ACK. However, the failure of the re-INVITE does not cause the 
existing call to fail—the session continues using the previously negotiated characteristics. 

At the end of the call, Bob disconnects (hangs up) fi rst and generates a BYE message. This BYE is routed 
directly to Alice’s softphone, again bypassing the proxies. Alice confi rms receipt of the BYE with a 200 
(OK) response, which terminates the session and the BYE transaction. No ACK is sent—an ACK is only 
sent in response to a response to an INVITE request. The reasons for this special handling for INVITE will 
be discussed later, but relate to the reliability mechanisms in SIP, the length of time it can take for a ring-
ing phone to be answered, and forking. For this reason, request handling in SIP is often classifi ed as either 
INVITE or non-INVITE, referring to all other methods besides   INVITE.

In some cases, it may be useful for proxies in the SIP signaling path to see all the messaging between the 
endpoints for the duration of the session. For example, if the biloxi.com proxy server wished to remain in 
the SIP messaging path beyond the initial INVITE, it would add to the INVITE a required routing header 
fi eld known as Record-Route that contained a URI resolving to the hostname or IP address of the proxy. 
This information would be received by both Bob’s SIP phone and (due to the Record-Route header fi eld 
being passed back in the 200 (OK)) Alice’s softphone and stored for the duration of the dialog. The biloxi.
com proxy server would then receive and proxy the ACK, BYE, and 200 (OK) to the BYE. Each proxy can 
independently decide to receive subsequent messages, and those messages will pass through all proxies that 
elect to receive it. This capability is frequently used for proxies that are providing mid-call features.

Registration is another common operation in SIP. Registration is one way that the biloxi.com server can 
learn the current location of Bob. Upon initialization, and at periodic intervals, Bob’s SIP phone sends REG-
ISTER messages to a server in the biloxi.com domain known as an SIP registrar. The   REGISTER messages 
associate Bob’s SIP or SIPS URI (sip:bob@biloxi.com) with the machine into which he is currently logged 
(conveyed as a SIP or SIPS URI in the Contact header fi eld). The registrar writes this association, also called 
a binding, to a database, called the location service, where it can be used by the proxy in the biloxi.com 
domain. Often, a registrar server for a domain is co-located with the proxy for that domain. It is an important 
concept that the distinction between types of SIP servers is logical, not physical.

Bob is not limited to registering from a single device. For example, both his SIP phone at home and the one 
in the offi ce could send registrations. This information is stored together in the location service and allows a 
proxy to perform various types of searches to locate Bob. Similarly, more than one user can be registered on 
a single device at the same time.

The location service is just an abstract concept. It generally contains information that allows a proxy to input 
a URI and receive a set of zero or more URIs that tell the proxy where to send the request. Registrations are 
one way to create this information, but not the only way. Arbitrary mapping functions can be confi gured at 
the discretion of the administrator.

Finally, it is important to note that in SIP, registration is used for routing incoming SIP requests and has 
no role in authorizing outgoing requests. Authorization and authentication are handled in SIP either on a 
request-by-request basis with a challenge/response mechanism, or by using a lower-layer scheme.

Additional operations in SIP, such as querying for the capabilities of a SIP server or client using OPTIONS, 
or canceling a pending request using CANCEL, will be introduced in later sections.
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3.5   Structure of the Protocol
SIP is structured as a layered protocol, which means that its behavior is described in terms of a set of fairly 
independent processing stages with only a loose coupling between each stage. The protocol behavior is 
described as layers for the purpose of presentation, allowing the description of functions common across ele-
ments in a single section. It does not dictate an implementation in any way. When one states that an element 
“contains” a layer, one means it is compliant to the set of rules defi ned by that layer.

Not every element specifi ed by the protocol contains every layer. Furthermore, the elements specifi ed by SIP 
are logical elements, not physical ones. A physical realization can choose to act as different logical elements, 
perhaps even on a transaction-by-transaction basis.

The lowest layer of SIP is its   syntax and encoding. Its encoding is specifi ed using an augmented 
Backus-Naur Form (BNF) grammar.
The second layer is the   transport layer. It defi nes how a client sends requests and receives responses 
and how a server receives requests and sends responses over the network. All SIP elements contain 
a transport layer.
The third layer is the   transaction layer. Transactions are a fundamental component of SIP. A 
transaction is a request sent by a client transaction (using the transport layer) to a server transac-
tion, along with all responses to that request sent from the server transaction back to the client. The 
transaction layer handles application-layer retransmissions, matching of responses to requests, and 
application-layer timeouts. Any task that a User Agent Client (UAC) accomplishes takes place us-
ing a series of transactions. User agents contain a transaction layer, as do stateful proxies. Stateless 
proxies do not contain a transaction layer. The transaction layer has a client component (referred to 
as a client transaction) and a server component (referred to as a server transaction), each of which 
are represented by a fi nite state machine that is constructed to process a particular request.
The layer above the transaction layer is called the   Transaction User (TU). Each of the SIP enti-
ties, except the stateless proxy, is a transaction user. When a TU wishes to send a request, it creates 
a client transaction instance and passes it the request along with the destination IP address, port, 
and transport to which to send the request. A TU that creates a client transaction can also cancel it. 
When a client cancels a transaction, it requests that the server stop further processing, revert to the 
state that existed before the transaction was initiated, and generate a specifi c error response to that 
transaction. This is done with a CANCEL request, which constitutes its own transaction, but refer-
ences the transaction to be cancelled.

The   SIP elements, that is, user agent clients and servers, stateless and stateful proxies and registrars, contain 
a core that distinguishes them from each other. Cores, except for the stateless proxy, are transaction users. 
While the behavior of the  UAC and  UAS cores depends on the method, there are some common rules for all 
methods. For a UAC, these rules govern the construction of a request; for a UAS, they govern the processing 
of a request and generating a response. Since registrations play an important role in SIP, a UAS that handles 
a REGISTER is given the special name registrar. Section A.5 (in this chapter’s appendix) describes UAC and 
UAS core behavior for the REGISTER method; Section A.6 describes UAC and UAS core behavior for the 
OPTIONS method, used for determining the capabilities of a UA.

Certain other requests are sent within a dialog. A dialog is a peer-to-peer SIP relationship between two user 
agents that persists for some time. The dialog facilitates sequencing of messages and proper routing of requests 
between the user agents. The   INVITE method is the only way defi ned in this specifi cation to establish a dialog. 
When a UAC sends a request that is within the context of a dialog, it follows the common UAC rules as dis-
cussed in Section A.3 but also the rules for mid-dialog requests. Section A.7 discusses dialogs and presents the 
procedures for their construction and maintenance, in addition to construction of requests within a dialog.

•

•

•

•

Minoli_Book.indb   114Minoli_Book.indb   114 3/9/2006   6:30:14 PM3/9/2006   6:30:14 PM



Basic VoIP Signaling and SIP Concepts

115

The most important method in SIP is the INVITE method, which is used to establish a session between 
participants. A session is a collection of participants, and streams of media between them, for the purposes 
of communication. Section A.8 discusses how sessions are initiated, resulting in one or more SIP dialogs. 
Section A.9 discusses how characteristics of that session are modifi ed through the use of an INVITE request 
within a dialog. Section A.10 discusses how a session is terminated. Section A.12 covers transactions, while 
Section A.13 covers the topic of the transport of SIP messages.

The procedures of Sections A.3, A.5, A.6, A.7, A.8, A.9, and A.10 deal entirely with the UA core (Section 
A.4 describes cancellation, which applies to both UA core and proxy core). Section A.11 discusses the proxy 
element, which facilitates routing of messages between user agents.

3.6 SIP Details
Some, but for sure not all, details of the SIP protocol are discussed in Appendix A. All normative and/or 
development work should make direct and explicit reference to the latest IETF/RFC documentation. 

Because the theme of this book is end-to-end VoIP service mechanisms, we provide a view into some of the 
SIP details in the material that follows. We see SIP and IPv6 as two key enabling capabilities for 3G VoIP 
being introduced in the next 2–3 years. In fact, we see the issue around IPv6 as to “when” rather than “if.” 
However, nothing discussed in this book precludes the continued use of IPv4, anymore than digital PSTN 
switching/transmission (including ISDN and DSL) has completely eliminated analog telephone systems still 
in use is some locations in the U.S. and in the rest of the world.

Appendix A

A.1 Defi nitions
This section identifi es nomenclature used in describing the SIP protocol.

  Address-of-Record:  An Address-Of-Record (AOR) is a SIP or SIPS URI that points to a domain with 
a location service that can map the URI to another URI where the user might be available. Typi-
cally, the location service is populated through registrations. An AOR is frequently thought of as the 
“public address” of the user.

  Back-to-Back User Agent:  A Back-to-Back User Agent (B2BUA) is a logical entity that receives a re-
quest and processes it as a User Agent Server (UAS). In order to determine how the request should 
be answered, it acts as a User Agent Client (UAC) and generates requests. Unlike a proxy server, 
it maintains dialog state and must participate in all requests sent on the dialogs it has established. 
Since it is a concatenation of a UAC and UAS, no explicit defi nitions are needed for its behavior.

 Call:  A call is an informal term that refers to some communication between peers, generally set up for 
the purposes of a multimedia conversation.

 Call Leg:  Another name for a dialog; no longer used in this specifi cation.
 Call Stateful: A proxy is call stateful if it retains state for a dialog from the initiating INVITE to the 

terminating BYE request. A call stateful proxy is always transaction stateful, but the converse is not 
necessarily true.

 Client: A client is any network element that sends SIP requests and receives SIP responses. Clients may 
or may not interact directly with a human user. User agent clients and proxies are clients.

 Conference:  A multimedia session that contains multiple participants.
 Core:  Core designates the functions specifi c to a particular type of SIP entity, i.e., specifi c to either a 

stateful or stateless proxy, a user agent or registrar. All cores, except those for the stateless proxy, 
are transaction users.
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 Dialog:  A dialog is a peer-to-peer SIP relationship between two UAs that persists for some time. A 
dialog is established by SIP messages, such as a 2xx response to an INVITE request. A dialog is 
identifi ed by a call identifi er, local tag, and a remote tag. A dialog was formerly known as a call leg 
in RFC 2543.

 Downstream:  A direction of message forwarding within a transaction that refers to the direction that 
requests fl ow from the user agent client to user agent server.

 Final Response:  A response that terminates a SIP transaction, as opposed to a provisional response that 
does not. All 2xx, 3xx, 4xx, 5xx and 6xx responses are fi nal.

 Header:  A header is a component of a SIP message that conveys information about the message. It is 
structured as a sequence of header fi elds.

 Header Field:  A header fi eld is a component of the SIP message header. A header fi eld can appear as 
one or more header fi eld rows. Header fi eld rows consist of a header fi eld name and zero or more 
header fi eld values. Multiple header fi eld values on a given header fi eld row are separated by com-
mas. Some header fi elds can only have a single header fi eld value, and as a result, always appear as 
a single header fi eld row.

 Header Field Value:  A header fi eld value is a single value; a header fi eld consists of zero or more 
header fi eld values.

 Home Domain:  The domain providing service to a SIP user. Typically, this is the domain present in the 
URI in the address-of-record of a registration.

 Informational Response:  Same as a provisional response.
 Initiator, Calling Party, Caller:  The party initiating a session (and dialog) with an INVITE request. A 

caller retains this role from the time it sends the initial INVITE that established a dialog until the 
termination of that dialog.

 Invitation:  An INVITE request.
 Invitee, Invited User, Called Party, Callee:  The party that receives an INVITE request for the purpose 

of establishing a new session. A callee retains this role from the time it receives the INVITE until 
the termination of the dialog established by that INVITE.

 Location Service:  A location service is used by a SIP redirect or proxy server to obtain information 
about a callee’s possible location(s). It contains a list of bindings of address-of-record keys to zero 
or more contact addresses. The bindings can be created and removed in many ways; this specifi ca-
tion defi nes a REGISTER method that updates the bindings.

 Loop:  A request that arrives at a proxy, is forwarded, and later arrives back at the same proxy. When it 
arrives the second time, its Request-URI is identical to the fi rst time, and other header fi elds that af-
fect proxy operation are unchanged, so that the proxy would make the same processing decision on 
the request it made the fi rst time. Looped requests are errors, and the procedures for detecting them 
and handling them are described by the protocol.

 Loose Routing:  A proxy is said to be loose routing if it follows the procedures defi ned in this specifi -
cation for processing of the Route header fi eld. These procedures separate the destination of the 
request (present in the Request-URI) from the set of proxies that need to be visited along the way 
(present in the Route header fi eld). A proxy compliant to these mechanisms is also known as a 
loose router.

 Message:  Data sent between SIP elements as part of the protocol. SIP messages are either requests or 
responses.

 Method:  The method is the primary function that a request is meant to invoke on a server. The method 
is carried in the request message itself. Example methods are INVITE and BYE.
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 Outbound Proxy:  A proxy that receives requests from a client, even though it may not be the server 
resolved by the Request-URI. Typically, a UA is manually confi gured with an outbound proxy, or 
can learn about one through auto-confi guration protocols.

 Parallel Search:  In a parallel search, a proxy issues several requests to possible user locations upon re-
ceiving an incoming request. Rather than issuing one request and then waiting for the fi nal response 
before issuing the next request as in a sequential search, a parallel search issues requests without 
waiting for the result of previous requests.

 Provisional Response:  A response used by the server to indicate progress, but that does not terminate a 
SIP transaction. 1xx responses are provisional, other responses are considered fi nal.

 Proxy, Proxy Server:  An intermediary entity that acts as both a server and a client for the purpose of 
making requests on behalf of other clients. A proxy server primarily plays the role of routing, which 
means its job is to ensure that a request is sent to another entity “closer” to the targeted user. Proxies 
are also useful for enforcing policy (for example, making sure a user is allowed to make a call). A 
proxy interprets, and, if necessary, rewrites specifi c parts of a request message before forwarding it.

 Recursion:  A client recurses on a 3xx response when it generates a new request to one or more of the 
URIs in the Contact header fi eld in the response.

 Redirect Server:  A redirect server is a user agent server that generates 3xx responses to requests it 
receives, directing the client to contact an alternate set of URIs.

 Registrar:  A registrar is a server that accepts REGISTER requests and places the information it re-
ceives in those requests into the location service for the domain it handles.

 Regular Transaction:  A regular transaction is any transaction with a method other than INVITE, ACK, 
or CANCEL.

 Request:  A SIP message sent from a client to a server, for the purpose of invoking a particular operation.
 Response:  A SIP message sent from a server to a client, for indicating the status of a request sent from 

the client to the server.
 Ringback:  Ringback is the signaling tone produced by the calling party’s application indicating that a 

called party is being alerted (ringing).
 Route Set:  A route set is a collection of ordered SIP or SIPS URI which represent a list of proxies that 

must be traversed when sending a particular request. A route set can be learned, through headers 
like Record-Route, or it can be confi gured.

 Server:  A server is a network element that receives requests in order to service them and sends back 
responses to those requests. Examples of servers are proxies, user agent servers, redirect servers, 
and registrars.

 Sequential Search:  In a sequential search, a proxy server attempts each contact address in sequence, 
proceeding to the next one only after the previous has generated a fi nal response. A 2xx or 6xx class 
fi nal response always terminates a sequential search.

 Session:  From the SDP specifi cation: “A multimedia session is a set of multimedia senders and receiv-
ers and the data streams fl owing from senders to receivers. A multimedia conference is an example 
of a multimedia session.” (RFC 2327 [1]) (A session as defi ned for SDP can comprise one or more 
RTP sessions.) As defi ned, a callee can be invited several times, by different calls, to the same ses-
sion. If SDP is used, a session is defi ned by the concatenation of the SDP user name, session id, 
network type, address type, and address elements in the origin fi eld.

 SIP Transaction:  A SIP transaction occurs between a client and a server and comprises all messages from 
the fi rst request sent from the client to the server up to a fi nal (non-1xx) response sent from the server 
to the client. If the request is INVITE and the fi nal response is a non-2xx, the transaction also includes 
an ACK to the response. The ACK for a 2xx response to an INVITE request is a separate transaction.
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 Spiral:  A spiral is a SIP request that is routed to a proxy, forwarded onwards, and arrives once again 
at that proxy, but this time differs in a way that will result in a different processing decision than 
the original request. Typically, this means that the request’s Request-URI differs from its previous 
arrival. A spiral is not an error condition, unlike a loop. A typical cause for this is call forwarding. 
A user calls joe@example.com. The example.com proxy forwards it to Joe’s PC, which in turn, 
forwards it to bob@example.com. This request is proxied back to the example.com proxy. How-
ever, this is not a loop. Since the request is targeted at a different user, it is considered a spiral, and 
is a valid condition.

 Stateful Proxy:  A logical entity that maintains the client and server transaction state machines defi ned 
by this specifi cation during the processing of a request, also known as a transaction stateful proxy. 
The behavior of a stateful proxy is further defi ned in Section A.11. A (transaction) stateful proxy is 
not the same as a call stateful proxy.

 Stateless Proxy:  A logical entity that does not maintain the client or server transaction state machines 
defi ned in this specifi cation when it processes requests. A stateless proxy forwards every request it 
receives downstream and every response it receives upstream.

 Strict Routing:  A proxy is said to be strict routing if it follows the Route processing rules of RFC 2543 
and many prior work in progress versions of this RFC. That rule caused proxies to destroy the con-
tents of the Request-URI when a Route header fi eld was present. Strict routing behavior is not used 
in this specifi cation, in favor of a loose routing behavior. Proxies that perform strict routing are also 
known as strict routers.

 Target Refresh Request:  A target refresh request sent within a dialog is defi ned as a request that can 
modify the remote target of the dialog.

 Transaction User (TU):  The layer of protocol processing that resides above the transaction layer. Trans-
action users include the UAC core, UAS core, and proxy core.

 Upstream:  A direction of message forwarding within a transaction that refers to the direction that 
responses fl ow from the user agent server back to the user agent client.

 URL-encoded:  A character string encoded according to RFC 2396, Section 2.4.
 User Agent Client (UAC):  A user agent client is a logical entity that creates a new request, and then 

uses the client transaction state machinery to send it. The role of UAC lasts only for the duration 
of that transaction. In other words, if a piece of software initiates a request, it acts as a UAC for the 
duration of that transaction. If it receives a request later, it assumes the role of a user agent server 
for the processing of that transaction.

 UAC Core:  The set of processing functions required of a UAC that reside above the transaction and 
transport layers.

 User Agent Server (UAS):  A user agent server is a logical entity that generates a response to a SIP re-
quest. The response accepts, rejects, or redirects the request. This role lasts only for the duration of 
that transaction. In other words, if a piece of software responds to a request, it acts as a UAS for the 
duration of that transaction. If it generates a request later, it assumes the role of a user agent client 
for the processing of that transaction.

 UAS Core:  The set of processing functions required at a UAS that resides above the transaction and 
transport layers.

 User Agent (UA):  A logical entity that can act as both a user agent client and user agent server.

The role of UAC and UAS, as well as proxy and redirect servers, are defi ned on a transaction-by-transaction 
basis. For example, the user agent initiating a call acts as a UAC when sending the initial INVITE request 
and as a UAS when receiving a BYE request from the callee. Similarly, the same software can act as a proxy 
server for one request and as a redirect server for the next request.
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Proxy, location, and registrar servers defi ned above are logical entities; implementations may combine them 
into a single application.

A.2   SIP Messages
SIP is a text-based protocol and uses the UTF-8 charset (RFC 2279). A SIP message is either a request from 
a client to a server, or a response from a server to a client. Both Request and Response messages use the 
basic format of RFC 2822, even though the syntax differs in character set and syntax specifi cs. (SIP allows 
header fi elds that would not be valid RFC 2822 header fi elds, for example.) Both types of messages consist of 
a start-line, one or more header fi elds, an empty line indicating the end of the header fi elds, and an optional 
message-body.

     generic-message = start-line
               *message-header
               CRLF
               [ message-body ]
     start-line    = Request-Line / Status-Line

The start-line, each message-header line, and the empty line must be terminated by a Carriage-Return Line-
Feed sequence (CRLF). Note that the empty line must be present even if the message-body is not. Except 
for the above difference in character sets, much of SIP’s message and header fi eld syntax is identical to 
HTTP/1.1. Rather than repeating the syntax and semantics here, we use [HX.Y] to refer to Section X.Y of 
the HTTP/1.1 specifi cation (RFC 2616). However, it should be noted that SIP is not an extension of HTTP.

A.2.1  Requests
  SIP requests are distinguished by having a Request-Line for a start-line. A Request-Line contains a method 
name, a Request-URI, and the protocol version separated by a Single Space (SP) character. The Request-
Line ends with CRLF. No CR or LF are allowed except in the end-of-line CRLF sequence. No Linear 
Whitespace (LWS) is allowed in any of the elements.

 Request-Line = Method SP Request-URI SP SIP-Version CRLF

Method:  This specifi cation defi nes six methods: REGISTER for registering contact information, IN-
VITE, ACK, and CANCEL for setting up sessions, BYE for terminating sessions, and OPTIONS 
for querying servers about their capabilities. SIP extensions, documented in standards track RFCs, 
may defi ne additional methods.

 Request-URI:  The Request-URI is a SIP or SIPS URI or a general URI (RFC 2396). It indicates the 
user or service to which this request is being addressed. The Request-URI must not contain unes-
caped spaces or control characters and must not be enclosed in “<>.” SIP elements may support 
Request-URIs with schemes other than “sip” and “sips,” for example the “tel” URI scheme of RFC 
2806. SIP elements may translate non-SIP URIs using any mechanism at their disposal, resulting in 
SIP URI, SIPS URI, or some other scheme.

 SIP-Version:  Both request and response messages include the version of SIP in use, and follow [H3.1] 
(with HTTP replaced by SIP, and HTTP/1.1 replaced by SIP/2.0) regarding version ordering, com-
pliance requirements, and upgrading of version numbers. To be compliant with this specifi cation, 
applications sending SIP messages must include a SIP-Version of “SIP/2.0.” The SIP-Version string 
is case-insensitive, but implementations must send upper-case. Unlike HTTP/1.1, SIP treats the ver-
sion number as a literal string. In practice, this should make no difference.
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A.2.2 Responses
  SIP responses are distinguished from requests by having a Status-Line as their start-line. A Status-Line con-
sists of the protocol version followed by a numeric Status-Code and its associated textual phrase, with each 
element separated by a single SP character. No CR or LF is allowed except in the fi nal CRLF sequence.

 Status-Line = SIP-Version SP Status-Code SP Reason-Phrase CRLF

The Status-Code is a 3-digit integer result code that indicates the outcome of an attempt to understand and 
satisfy a request. The Reason-Phrase is intended to give a short textual description of the Status-Code. The 
Status-Code is intended for use by automata, whereas the Reason-Phrase is intended for the human user. A 
client is not required to examine or display the Reason-Phrase.

While RFC 3261 suggests specifi c wording for the reason phrase, implementations may choose other text, 
for example, in the language indicated in the Accept-Language header fi eld of the request.

The fi rst digit of the Status-Code defi nes the class of response. The last two digits do not have any catego-
rization role. For this reason, any response with a status code between 100 and 199 is referred to as a “1xx 
response,” any response with a status code between 200 and 299 as a “2xx response,” and so on. SIP/2.0 
allows six values for the fi rst digit:

   1xx: Provisional—request received, continuing to process the request;

   2xx: Success—the action was successfully received, understood, and accepted;

   3xx: Redirection—further action needs to be taken in order to complete the request;

   4xx: Client Error—the request contains bad syntax or cannot be fulfi lled at this server;

   5xx: Server Error—the server failed to fulfi ll an apparently valid request;

   6xx: Global Failure—the request cannot be fulfi lled at any server.

A.2.3 Header Fields
  SIP header fi elds are similar to HTTP header fi elds in both syntax and semantics. In particular, SIP header 
fi elds follow the [H4.2] defi nitions of syntax for the message-header and the rules for extending header 
fi elds over multiple lines. However, the latter is specifi ed in HTTP with implicit whitespace and folding. 
This specifi cation conforms to RFC 2234 and uses only explicit whitespace and folding as an integral part 
of the grammar. [H4.2] also specifi es that multiple header fi elds of the same fi eld name whose value is a 
comma-separated list can be combined into one header fi eld. That applies to SIP as well, but the specifi c rule 
is different because of the different grammars. Specifi cally, any SIP header whose grammar is of the form

   header = “header-name” HCOLON header-value *(COMMA header-value)

allows for combining header fi elds of the same name into a comma-separated list. The Contact header fi eld 
allows a comma-separated list unless the header fi eld value is “*.”

A.2.3.1  Header Field Format
Header fi elds follow the same generic header format as that given in RFC 2822. Each header fi eld consists of 
a fi eld name followed by a colon (“:”) and the fi eld value.
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   field-name: field-value

The formal grammar for a message-header allows for an arbitrary amount of whitespace on either side of the 
colon; however, implementations should avoid spaces between the fi eld name and the colon and use a Single 
Space (SP) between the colon and the fi eld-value.

   Subject:      lunch
   Subject   :   lunch
   Subject      :lunch
   Subject: lunch

Thus, the above are all valid and equivalent, but the last is the preferred form.

Header fi elds can be extended over multiple lines by preceding each extra line with at least one SP or Hori-
zontal Tab (HT). The line break and the whitespace at the beginning of the next line are treated as a single 
SP character. Thus, the following are equivalent:

   Subject: I know you’re there, pick up the phone and talk to me!
   Subject: I know you’re there,
        pick up the phone
        and talk to me!

The relative order of header fi elds with different fi eld names is not signifi cant. However, it is recommended that 
header fi elds which are needed for proxy processing (Via, Route, Record-Route, Proxy-Require, Max-Forwards, 
and Proxy-Authorization, for example) appear towards the top of the message to facilitate rapid parsing. The rel-
ative order of header fi eld rows with the same fi eld name is important. Multiple header fi eld rows with the same 
fi eld-name may be present in a message if and only if the entire fi eld-value for that header fi eld is defi ned as a 
comma-separated list (that is, if it follows the grammar defi ned in Section A.2.3). It must be possible to com-
bine the multiple header fi eld rows into one “fi eld-name: fi eld-value” pair, without changing the semantics of 
the message, by appending each subsequent fi eld-value to the fi rst, each separated by a comma. The exceptions 
to this rule are the WWW-Authenticate, Authorization, Proxy-Authenticate, and Proxy-Authorization header 
fi elds. Multiple header fi eld rows with these names may be present in a message, but since their grammar does 
not follow the general form listed in Section A.2.3, they must not be combined into a single header fi eld row.

Implementations must be able to process multiple header fi eld rows with the same name in any combination 
of the single-value-per-line or comma-separated value forms.

The following groups of  header fi eld rows are valid and equivalent:

   Route: <sip:alice@atlanta.com>
   Subject: Lunch
   Route: <sip:bob@biloxi.com>
   Route: <sip:carol@chicago.com>

   Route: <sip:alice@atlanta.com>, <sip:bob@biloxi.com>
   Route: <sip:carol@chicago.com>
   Subject: Lunch

   Subject: Lunch
   Route: <sip:alice@atlanta.com>, <sip:bob@biloxi.com>,
       <sip:carol@chicago.com>
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Each of the following blocks is valid but not equivalent to the others:

   Route: <sip:alice@atlanta.com>
   Route: <sip:bob@biloxi.com>
   Route: <sip:carol@chicago.com>

   Route: <sip:bob@biloxi.com>
   Route: <sip:alice@atlanta.com>
   Route: <sip:carol@chicago.com>

   Route: <sip:alice@atlanta.com>,<sip:carol@chicago.com>,<sip:bob@biloxi.com>

The format of a header fi eld-value is defi ned per header-name. It will always be either an opaque sequence 
of TEXT-UTF8 octets, or a combination of whitespace, tokens, separators, and quoted strings. Many exist-
ing header fi elds will adhere to the general form of a value followed by a semicolon-separated sequence of 
parameter-name, parameter-value pairs:

     field-name: field-value *(;parameter-name=parameter-value)

Even though an arbitrary number of parameter pairs may be attached to a header fi eld value, any given param-
eter-name must not appear more than once.

When comparing header fi elds, fi eld names are always case-insensitive. Unless otherwise stated in the 
defi nition of a particular header fi eld, fi eld values, parameter names, and parameter values are case-insensi-
tive. Tokens are always case-insensitive. Unless specifi ed otherwise, values expressed as quoted strings are 
case-sensitive. For example,

   Contact: <sip:alice@atlanta.com>;expires=3600

is equivalent to

   CONTACT: <sip:alice@atlanta.com>;ExPiReS=3600

Similarly,

   Content-Disposition: session;handling=optional

is equivalent to

   content-disposition: Session;HANDLING=OPTIONAL

  The following two header fi elds are not equivalent:

   Warning: 370 devnull “Choose a bigger pipe”
   Warning: 370 devnull “CHOOSE A BIGGER PIPE”

A.2.3.2   Header Field Classifi cation
Some header fi elds only make sense in requests or responses. These are called   request header fi elds and 
  response header fi elds, respectively. If a header fi eld appears in a message not matching its category (such as a 
request header fi eld in a response), it must be ignored. The RFC defi nes the classifi cation of each header fi eld.
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A.2.3.3  Compact Form
SIP provides a mechanism to represent common header fi eld names in an abbreviated form. This may 
be useful when messages would otherwise become too large to be carried on the transport available to it 
(exceeding the Maximum Transmission Unit (MTU) when using UDP, for example). A compact form may 
be substituted for the longer form of a header fi eld name at any time without changing the semantics of the 
message. A header fi eld name may appear in both long and short forms within the same message. Implemen-
tations must accept both the long and short forms of each header name.

A.2.4  Bodies
Requests, including new requests defi ned in extensions to this specifi cation, may contain message bodies un-
less otherwise noted. The interpretation of the body depends on the request method. For response messages, 
the request method and the response status code determine the type and interpretation of any message body. 
All responses may include a body.

A.2.4.1    Message Body Type
The Internet media type of the message body must be given by the Content-Type header fi eld. If the body 
has undergone any encoding such as compression, then this must be indicated by the Content-Encoding 
header fi eld; otherwise, Content-Encoding must be omitted. If applicable, the character set of the message 
body is indicated as part of the Content-Type header-fi eld value. The “multipart” MIME type defi ned in RFC 
2046 may be used within the body of the message. Implementations that send requests containing multipart 
message bodies must send a session description as a nonmultipart message body if the remote implemen-
tation requests this through an Accept header fi eld that does not contain multipart message bodies. SIP 
messages may contain binary bodies or body parts. When no explicit charset parameter is provided by the 
sender, media subtypes of the “text” type are defi ned to have a default charset value of “UTF-8.”

A.2.4.2    Message Body Length
The body length in bytes is provided by the Content-Length header fi eld. The “chunked” transfer encoding 
of HTTP/1.1 is not be used for SIP. (Note: The chunked encoding modifi es the body of a message in order to 
transfer it as a series of chunks, each with its own size indicator.)

A.2.5   Framing SIP Messages
Unlike HTTP, SIP implementations can use UDP or other unreliable datagram protocols. Each such datagram 
carries one request or response. Implementations processing SIP messages over stream-oriented transports 
must ignore any CRLF appearing before the start-line. The Content-Length header fi eld value is used to locate 
the end of each SIP message in a stream. It will always be present when SIP messages are sent over stream-
oriented transports.

A.3  General   User Agent Behavior
A user agent represents an end system. It contains a   User Agent Client (UAC), which generates requests, 
and a   User Agent Server (UAS), which responds to them. A UAC is capable of generating a request based on 
some external stimulus (the user clicking a button, or a signal on a PSTN line) and processing a response. A 
UAS is capable of receiving a request and generating a response based on user input, external stimulus, the 
result of a program execution, or some other mechanism. When a UAC sends a request, the request passes 
through some number of proxy servers, which forward the request towards the UAS. When the UAS gener-
ates a response, the response is forwarded towards the UAC.

UAC and UAS procedures depend strongly on two factors. First, based on whether the request or response is 
inside or outside of a dialog, and second, based on the method of a request. Dialogs are discussed thoroughly 
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in Section A.7; they represent a peer-to-peer relationship between user agents and are established by specifi c 
SIP methods, such as INVITE.

This section discusses the method-independent rules for UAC and UAS behavior when processing requests 
that are outside of a dialog. This includes, of course, the requests which themselves establish a dialog.

A.3.1    UAC Behavior
This section covers UAC behavior outside of a dialog.

A.3.1.1  Generating the Request
A valid SIP request formulated by a UAC must, at a minimum, contain the following header fi elds: To, 
From, CSeq, Call-ID, Max-Forwards, and Via; all of these header fi elds are mandatory in all SIP requests. 
These six header fi elds are the fundamental building blocks of a SIP message, as they jointly provide for 
most of the critical message routing services including the addressing of messages, the routing of responses, 
limiting message propagation, ordering of messages, and the unique identifi cation of transactions. These 
header fi elds are in addition to the mandatory request line, which contains the method, Request-URI, and 
SIP version. Examples of requests sent outside of a dialog include an INVITE to establish a session and an 
OPTIONS to query for capabilities.

 Request-URI
The initial Request-URI of the message should be set to the value of the URI in the To fi eld. One notable 
exception is the REGISTER method; behavior for setting the Request-URI of   REGISTER is given in Sec-
tion A.5. It may also be undesirable for privacy reasons or convenience to set these fi elds to the same value 
(especially if the originating UA expects that the Request-URI will be changed during transit).

In some special circumstances, the presence of a pre-existing route set can affect the Request-URI of the 
message. A pre-existing route set is an ordered set of URIs that identify a chain of servers, to which a UAC 
will send outgoing requests that are outside of a dialog. Commonly, they are confi gured on the UA by a user 
or service provider manually, or through some other non-SIP mechanism. When a provider wishes to con-
fi gure a UA with an outbound proxy, it is recommended that this be done by providing it with a pre-existing 
route set with a single URI, that of the outbound proxy.

To
The To header fi eld, fi rst and foremost, specifi es the desired “logical” recipient of the request, or the ad-
dress-of-record of the user or resource that is the target of this request. This may or may not be the ultimate 
recipient of the request. The To header fi eld may contain a SIP or SIPS URI, but it may also make use of 
other URI schemes (the tel URL (RFC 2806), for example) when appropriate. All SIP implementations must 
support the SIP URI scheme. Any implementation that supports TLS must support the SIPS URI scheme. 
The To header fi eld allows for a display name.

A UAC may learn how to populate the To header fi eld for a particular request in a number of ways. Usually 
the user will suggest the To header fi eld through a human interface, perhaps inputting the URI manually or 
selecting it from some sort of address book. Frequently, the user will not enter a complete URI, but rather a 
string of digits or letters (for example, “bob”). It is at the discretion of the UA to choose how to interpret this 
input. Using the string to form the user part of a SIP URI implies that the UA wishes the name to be resolved 
in the domain to the right-hand side (RHS) of the at-sign in the SIP URI (for instance, sip:bob@example.
com). Using the string to form the user part of a SIPS URI implies that the UA wishes to communicate 
securely, and that the name is to be resolved in the domain to the RHS of the at-sign. The RHS will fre-
quently be the home domain of the requestor, which allows for the home domain to process the outgoing 
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request. This is useful for features like “speed dial” that require interpretation of the user part in the home 
domain. The tel URL may be used when the UA does not wish to specify the domain that should interpret 
a telephone number that has been input by the user. Rather, each domain through which the request passes 
would be given that opportunity. As an example, a user in an airport might log in and send requests through 
an outbound proxy in the airport. If they enter “411” (this is the phone number for local directory assistance 
in the United States), that needs to be interpreted and processed by the outbound proxy in the airport, not the 
user’s home domain. In this case, tel:411 would be the right choice.

A request outside of a dialog must not contain a To tag; the tag in the To fi eld of a request identifi es the peer 
of the dialog. Since no dialog is established, no tag is present.

The following is an example of a valid To header fi eld:

 To: Carol <sip:carol@chicago.com>

From
The From header fi eld indicates the logical identity of the initiator of the request, possibly the user’s address-
of-record. Like the To header fi eld, it contains a URI and optionally a display name. It is used by SIP elements 
to determine which processing rules to apply to a request (for example, automatic call rejection). As such, it is 
very important that the From URI not contain IP addresses or the FQDN of the host on which the UA is run-
ning, since these are not logical names.

The From header fi eld allows for a display name. A UAC should use the display name “Anonymous,” along 
with a syntactically correct, but otherwise meaningless URI (like sip:thisis@anonymous.invalid), if the iden-
tity of the client is to remain hidden.

Usually, the value that populates the From header fi eld in requests generated by a particular UA is pre-provi-
sioned by the user or by the administrators of the user’s local domain. If a particular UA is used by multiple 
users, it might have switchable profi les that include a URI corresponding to the identity of the profi led user. 
Recipients of requests can authenticate the originator of a request in order to ascertain that they are who their 
From header fi eld claims they are. The From fi eld must contain a new “tag” parameter, chosen by the UAC. 

Examples:

   From: “Bob” <sips:bob@biloxi.com> ;tag=a48s
   From: sip:+12125551212@phone2net.com;tag=887s
   From: Anonymous <sip:c8oqz84zk7z@privacy.org>;tag=hyh8

 Call-ID
The Call-ID header fi eld acts as a unique identifi er to group together a series of messages. It must be the 
same for all requests and responses sent by either UA in a dialog. It should be the same in each registration 
from a UA.

In a new request created by a UAC outside of any dialog, the Call-ID header fi eld must be selected by the 
UAC as a globally unique identifi er over space and time unless overridden by method-specifi c behavior. 
All SIP UAs must have a means to guarantee that the Call-ID header fi elds they produce will not be inad-
vertently generated by any other UA. Note that when requests are retried after certain failure responses that 
solicit an amendment to a request (for example, a challenge for authentication), these retried requests are not 
considered new requests and, therefore, do not need new Call-ID header fi elds.
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Use of cryptographically random identifi ers (RFC 1750) in the generation of Call-IDs is recommended. 
Implementations may use the form “localid@host.” Call-IDs are case-sensitive and are simply compared 
byte-by-byte. Using cryptographically random identifi ers provides some protection against session hijack-
ing and reduces the likelihood of unintentional Call-ID collisions. No provisioning or human interface is 
required for the selection of the Call-ID header fi eld value for a request.

Example:

 Call-ID: f81d4fae-7dec-11d0-a765-00a0c91e6bf6@foo.bar.com

 CSeq
The CSeq header fi eld serves as a way to identify and order transactions. It consists of a sequence number 
and a method. The method must match that of the request. For non-REGISTER requests outside of a dialog, 
the sequence number value is arbitrary. The sequence number value must be expressible as a 32-bit unsigned 
integer and must be less than 2**31. As long as it follows the above guidelines, a client may use any mecha-
nism it would like to select CSeq header fi eld values.

Example:

 CSeq: 4711 INVITE

 Max-Forwards
The Max-Forwards header fi eld serves to limit the number of hops a request can transit on the way to its des-
tination. It consists of an integer that is decremented by one at each hop. If the Max-Forwards value reaches 
0 before the request reaches its destination, it will be rejected with a 483 (Too Many Hops) error response.

A UAC must insert a Max-Forwards header fi eld into each request it originates with a value that should be 
70. This number was chosen to be suffi ciently large to guarantee that a request would not be dropped in any 
SIP network when there were no loops, but not so large as to consume proxy resources when a loop does oc-
cur. Lower values should be used with caution and only in networks where topologies are known by the UA.

 Via
The Via header fi eld indicates the transport used for the transaction and identifi es the location where the 
response is to be sent. A Via header fi eld value is added only after the transport that will be used to reach the 
next hop has been selected.

When the UAC creates a request, it must insert a Via into that request. The protocol name and protocol ver-
sion in the header fi eld must be SIP and 2.0, respectively. The Via header fi eld value must contain a branch 
parameter. This parameter is used to identify the transaction created by that request. This parameter is used 
by both the client and the server.

The branch parameter value must be unique across space and time for all requests sent by the UA. The ex-
ceptions to this rule are CANCEL and ACK for non-2xx responses. As discussed below, a CANCEL request 
will have the same value of the branch parameter as the request it cancels. An ACK for a non-2xx response 
will also have the same branch ID as the INVITE whose response it acknowledges. The uniqueness property 
of the branch ID parameter, to facilitate its use as a transaction ID, was not part of RFC 2543.

The branch ID inserted by an element compliant with this specifi cation must always begin with the characters 
“z9hG4bK.” These seven characters are used as a magic cookie (seven is deemed suffi cient to ensure that 
an older RFC 2543 implementation would not pick such a value), so that servers receiving the request can 
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determine that the branch ID was constructed in the fashion described by this specifi cation (that is, globally 
unique). Beyond this requirement, the precise format of the branch token is implementation-defi ned. The Via 
header maddr, ttl, and sent-by components will be set when the request is processed by the transport layer.

Contact
The Contact header fi eld provides a SIP or SIPS URI that can be used to contact that specifi c instance of the 
UA for subsequent requests. The Contact header fi eld must be present and contain exactly one SIP or SIPS 
URI in any request that can result in the establishment of a dialog. For the methods defi ned in this specifi ca-
tion, that includes only the INVITE request. For these requests, the scope of the Contact is global. That is, 
the Contact header fi eld value contains the URI at which the UA would like to receive requests, and this URI 
must be valid even if used in subsequent requests outside of any dialogs. If the Request-URI or top Route 
header fi eld value contains a SIPS URI, the Contact header fi eld must contain a SIPS URI as well.

Supported and Require
If the UAC supports extensions to SIP that can be applied by the server to the response, the UAC should 
include a Supported header fi eld in the request listing the option tags for those extensions.

The option tags listed must only refer to extensions defi ned in standards-track RFCs. This is to prevent serv-
ers from insisting that clients implement nonstandard, vendor-defi ned features in order to receive service. 
Extensions defi ned by experimental and informational RFCs are explicitly excluded from usage with the 
Supported header fi eld in a request, since they too are often used to document vendor-defi ned extensions.

If the UAC wishes to insist that a UAS understand an extension that the UAC will apply to the request in 
order to process the request, it must insert a Require header fi eld into the request listing the option tag for 
that extension. If the UAC wishes to apply an extension to the request and insist that any proxies that are 
traversed understand that extension, it must insert a Proxy-Require header fi eld into the request listing the 
option tag for that extension. As with the Supported header fi eld, the option tags in the Require and Proxy-
Require header fi elds must only refer to extensions defi ned in standards-track RFCs.

Additional Message Components
After a new request has been created, and the header fi elds described above have been properly constructed, 
any additional optional header fi elds are added, as are any header fi elds specifi c to the method. SIP requests 
may contain a MIME-encoded message-body. Regardless of the type of body that a request contains, certain 
header fi elds must be formulated to characterize the contents of the body.

A.3.1.2  Sending the Request
The destination for the request is then computed. Unless there is local policy specifying otherwise, the 
destination must be determined by applying the DNS procedures as follows. If the fi rst element in the route 
set indicated a strict router (resulting in forming the request), the procedures must be applied to the Request-
URI of the request. Otherwise, the procedures are applied to the fi rst Route header fi eld value in the request 
(if one exists), or to the request’s Request-URI if there is no Route header fi eld present. These procedures 
yield an ordered set of address, port, and transports to attempt. 

Local policy may specify an alternate set of destinations to attempt. If the Request-URI contains a SIPS 
URI, any alternate destinations must be contacted with TLS. Beyond that, there are no restrictions on the 
alternate destinations if the request contains no Route header fi eld. This provides a simple alternative to a 
pre-existing route set as a way to specify an outbound proxy. However, that approach for confi guring an 
outbound proxy is not recommended; a pre-existing route set with a single URI should be used instead. If 
the request contains a Route header fi eld, the request should be sent to the locations derived from its topmost 
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value, but may be sent to any server that the UA is certain will honor the Route and Request-URI policies 
specifi ed in this RFC (as opposed to those in RFC 2543). In particular, a UAC confi gured with an outbound 
proxy should attempt to send the request to the location indicated in the fi rst Route header fi eld value instead 
of adopting the policy of sending all messages to the outbound proxy.

This ensures that outbound proxies that do not add Record-Route header fi eld values will drop out of the 
path of subsequent requests. It allows endpoints that cannot resolve the fi rst Route URI to delegate that task 
to an outbound proxy.

The UAC should try each address until a server is contacted. Each try constitutes a new transaction, and 
therefore each carries a different topmost Via header fi eld value with a new branch parameter. Furthermore, 
the transport value in the Via header fi eld is set to whatever transport was determined for the target server.

A.3.1.3   Processing Responses
Responses are fi rst processed by the transport layer and then passed up to the transaction layer. The transaction 
layer performs its processing and then passes the response up to the TU. The majority of response processing in 
the TU is method specifi c. However, there are some general behaviors independent of the method.

 Transaction Layer Errors
In some cases, the response returned by the transaction layer will not be a SIP message, but rather a transac-
tion layer error. When a timeout error is received from the transaction layer, it must be treated as if a 408 
(Request Timeout) status code has been received. If a fatal transport error is reported by the transport layer 
(generally, due to fatal ICMP errors in UDP or connection failures in TCP), the condition must be treated as 
a 503 (Service Unavailable) status code.

 Unrecognized Responses
A UAC must treat any fi nal response it does not recognize as being equivalent to the x00 response code of 
that class, and must be able to process the x00 response code for all classes. For example, if a UAC receives 
an unrecognized response code of 431, it can safely assume that there was something wrong with its request 
and treat the response as if it had received a 400 (Bad Request) response code. A UAC must treat any provi-
sional response different than 100 that it does not recognize as 183 (Session Progress). A UAC must be able 
to process 100 and 183 responses.

Vias
If more than one Via header fi eld value is present in a response, the UAC should discard the message. The 
presence of additional Via header fi eld values that precede the originator of the request suggests that the 
message was misrouted or possibly corrupted.

 Processing 3xx Responses
Upon receipt of a redirection response (for example, a 301 response status code), clients should use the URI(s) 
in the Contact header fi eld to formulate one or more new requests based on the redirected request. This process 
is similar to that of a proxy recursing on a 3xx class response as detailed in Section A.11. A client starts with 
an initial target set containing exactly one URI, the Request-URI of the original request. If a client wishes to 
formulate new requests based on a 3xx class response to that request, it places the URIs to try into the target 
set. Subject to the restrictions in this specifi cation, a client can choose which Contact URIs it places into the 
target set. As with proxy recursion, a client processing 3xx class responses must not add any given URI to the 
target set more than once. If the original request had a SIPS URI in the Request-URI, the client may choose to 
recurse to a non-SIPS URI, but should inform the user of the redirection to an insecure URI.
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Any new request may receive 3xx responses themselves containing the original URI as a contact. Two loca-
tions can be confi gured to redirect to each other. Placing any given URI in the target set only once prevents 
infi nite redirection loops.

As the target set grows, the client may generate new requests to the URIs in any order. A common mecha-
nism is to order the set by the “q” parameter value from the Contact header fi eld value. Requests to the URIs 
may be generated serially or in parallel. One approach is to process groups of decreasing q-values serially 
and process the URIs in each q-value group in parallel. Another is to perform only serial processing in de-
creasing q-value order, arbitrarily choosing between contacts of equal q-value.

If contacting an address in the list results in a failure, as defi ned in the next paragraph, the element moves to 
the next address in the list, until the list is exhausted. If the list is exhausted, then the request has failed. Fail-
ures should be detected through failure response codes (codes greater than 399); for network errors the client 
transaction will report any transport layer failures to the transaction user. Note that some response codes 
indicate that the request can be retried; requests that are reattempted should not be considered failures. When 
a failure for a particular contact address is received, the client should try the next contact address. This will 
involve creating a new client transaction to deliver a new request.

In order to create a request based on a contact address in a 3xx response, a UAC must copy the entire URI 
from the target set into the Request-URI, except for the “method-param” and “header” URI parameters. 
It uses the “header” parameters to create header fi eld values for the new request, overwriting header fi eld 
values associated with the redirected request.

Note that in some instances, header fi elds that have been communicated in the contact address may instead 
append to existing request header fi elds in the original redirected request. As a general rule, if the header 
fi eld can accept a comma-separated list of values, then the new header fi eld value may be appended to any 
existing values in the original redirected request. If the header fi eld does not accept multiple values, the 
value in the original redirected request may be overwritten by the header fi eld value communicated in the 
contact address. For example, if a contact address is returned with the following value:

   sip:user@host?Subject=foo&Call-Info=<http://www.foo.com>

Then any Subject header fi eld in the original redirected request is overwritten, but the HTTP URL is merely 
appended to any existing Call-Info header fi eld values. It is recommended that the UAC reuse the same To, 
From, and Call-ID used in the original redirected request, but the UAC may also choose to update the Call-
ID header fi eld value, for example, for new requests.

Finally, once the new request has been constructed, it is sent using a new client transaction, and therefore 
must have a new branch ID in the top Via fi eld. In all other respects, requests sent upon receipt of a redirect 
response should reuse the header fi elds and bodies of the original request.

In some instances, Contact header fi eld values may be cached at UAC temporarily or permanently depending 
on the status code received and the presence of an expiration interval.

 Processing 4xx Responses
Certain 4xx response codes require specifi c UA processing, independent of the method.
If a 401 (Unauthorized) or 407 (Proxy Authentication Required) response is received, the UAC 
should follow the authorization procedures of described in the RFC to retry the request with 
 credentials.

•
•
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If a 413 (Request Entity Too Large) response is received, the request contained a body that was 
longer than the UAS was willing to accept. If possible, the UAC should retry the request, either 
omitting the body or using one of a smaller length.
If a 415 (Unsupported Media Type) response is received, the request contained media types not 
supported by the UAS. The UAC should retry sending the request, this time only using content with 
types listed in the Accept header fi eld in the response, with encodings listed in the Accept-Encoding 
header fi eld in the response, and with languages listed in the Accept-Language in the response.
If a 416 (Unsupported URI Scheme) response is received, the Request-URI used a URI scheme not 
supported by the server. The client should retry the request, this time, using a SIP URI.
If a 420 (Bad Extension) response is received, the request contained a Require or Proxy-Require 
header fi eld listing an option-tag for a feature not supported by a proxy or UAS. The UAC should 
retry the request, this time omitting any extensions listed in the Unsupported header fi eld in the 
response.

In all of the above cases, the request is retried by creating a new request with the appropriate modifi cations. 
This new request constitutes a new transaction and should have the same value of the Call-ID, To, and From 
of the previous request, but the CSeq should contain a new sequence number that is one higher than the previous.

With other 4xx responses, including those yet to be defi ned, a retry may or may not be possible depending 
on the method and the use case.

A.3.2   UAS Behavior
When a request outside of a dialog is processed by a UAS, there is a set of processing rules that are fol-
lowed, independent of the method. Section A.7 gives guidance on how a UAS can tell whether a request is 
inside or outside of a dialog. Note that request processing is atomic. If a request is accepted, all state changes 
associated with it must be performed. If it is rejected, all state changes must not be performed. UASs should 
process the requests in the order of the steps that follow in this section (that is, starting with authentication, 
then inspecting the method, the header fi elds, and so on throughout the remainder of this section).

A.3.2.1  Method Inspection
Once a request is authenticated (or authentication is skipped), the UAS must inspect the method of the 
request. If the UAS recognizes but does not support the method of a request, it must generate a 405 (Method 
Not Allowed) response. The UAS must also add an Allow header fi eld to the 405 (Method Not Allowed) 
response. The Allow header fi eld must list the set of methods supported by the UAS generating the message.

If the method is one supported by the server, processing continues.

A.3.2.2   Header Inspection
If a UAS does not understand a header fi eld in a request (that is, the header fi eld is not defi ned in this speci-
fi cation or in any supported extension), the server must ignore that header fi eld and continue processing the 
message. A UAS should ignore any malformed header fi elds that are not necessary for processing requests.

To and Request-URI
The To header fi eld identifi es the original recipient of the request designated by the user identifi ed in the 
From fi eld. The original recipient may or may not be the UAS processing the request, due to call forwarding 
or other proxy operations. A UAS may apply any policy it wishes to determine whether to accept requests 
when the To header fi eld is not the identity of the UAS. However, it is recommended that a UAS accept 
requests even if they do not recognize the URI scheme (for example, a tel: URI) in the To header fi eld, or 

•

•

•

•
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if the To header fi eld does not address a known or current user of this UAS. If, on the other hand, the UAS 
decides to reject the request, it should generate a response with a 403 (Forbidden) status code and pass it to 
the server transaction for transmission.

However, the Request-URI identifi es the UAS that is to process the request. If the Request-URI uses a 
scheme not supported by the UAS, it should reject the request with a 416 (Unsupported URI Scheme) 
response. If the Request-URI does not identify an address that the UAS is willing to accept requests for, it 
should reject the request with a 404 (Not Found) response. Typically, a UA that uses the REGISTER method 
to bind its address-of-record to a specifi c contact address will see requests whose Request-URI equals that 
contact address. Other potential sources of received Request-URIs include the Contact header fi elds of 
requests and responses sent by the UA that establish or refresh dialogs.

 Merged Requests
If the request has no tag in the To header fi eld, the UAS core must check the request against ongoing trans-
actions. If the From tag, Call-ID, and CSeq exactly match those associated with an ongoing transaction, but 
the request does not match that transaction (based on the matching rules in the RFC), the UAS core should 
generate a 482 (Loop Detected) response and pass it to the server transaction.

The same request has arrived at the UAS more than once, following different paths, most likely due to fork-
ing. The UAS processes the fi rst such request received and responds with a 482 (Loop Detected) to the rest 
of them.

 Require
Assuming the UAS decides that it is the proper element to process the request, it examines the Require head-
er fi eld, if present. The Require header fi eld is used by a UAC to tell a UAS about SIP extensions that the 
UAC expects the UAS to support in order to process the request properly. Its format is described in the RFC. 
If a UAS does not understand an option-tag listed in a Require header fi eld, it must respond by generating a 
response with status code 420 (Bad Extension). The UAS must add an Unsupported header fi eld, and list in 
it those options it does not understand amongst those in the Require header fi eld of the request.

Note that Require and Proxy-Require must not be used in a SIP CANCEL request, or in an ACK request sent 
for a non-2xx response. These header fi elds must be ignored if they are present in these requests.

An ACK request for a 2xx response must contain only those Require and Proxy-Require values that were 
present in the initial request.

Example:

   UAC->UAS:  INVITE sip:watson@bell-telephone.com SIP/2.0
         Require: 100rel

   UAS->UAC:  SIP/2.0 420 Bad Extension
         Unsupported: 100rel

This behavior ensures that the client-server interaction will proceed without delay when all options are 
understood by both sides, and only slow down if options are not understood (as in the example above). For a 
well-matched client-server pair, the interaction proceeds quickly, saving a round-trip often required by nego-
tiation mechanisms. In addition, it also removes ambiguity when the client requires features that the server 
does not understand. Some features, such as call handling fi elds, are only of interest to end systems.
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A.3.2.3   Content Processing
Assuming the UAS understands any extensions required by the client, the UAS examines the body of the 
message, and the header fi elds that describe it. If there are any bodies whose type (indicated by the Content-
Type), language (indicated by the Content-Language) or encoding (indicated by the Content-Encoding) are 
not understood, and that body part is not optional (as indicated by the Content-Disposition header fi eld), the 
UAS must reject the request with a 415 (Unsupported Media Type) response. The response must contain an 
Accept header fi eld listing the types of all bodies it understands in the event the request contained bodies 
of types not supported by the UAS. If the request contained content encodings not understood by the UAS, 
the response must contain an Accept-Encoding header fi eld listing the encodings understood by the UAS. 
If the request contained content with languages not understood by the UAS, the response must contain an 
Accept-Language header fi eld indicating the languages understood by the UAS. Beyond these checks, body 
handling depends on the method and type. 

A.3.2.4   Applying Extensions
A UAS that wishes to apply some extension when generating the response must not do so unless support for 
that extension is indicated in the Supported header fi eld in the request. If the desired extension is not sup-
ported, the server should rely only on baseline SIP and any other extensions supported by the client. In rare 
circumstances, where the server cannot process the request without the extension, the server may send a 421 
(Extension Required) response. This response indicates that the proper response cannot be generated without 
support of a specifi c extension. The needed extension(s) must be included in a Require header fi eld in the 
response. This behavior is not recommended, as it will generally break interoperability.

Any extensions applied to a non-421 response must be listed in a Require header fi eld included in the 
response. Of course, the server must not apply extensions not listed in the Supported header fi eld in the 
request. As a result of this, the Require header fi eld in a response will only ever contain option tags defi ned 
in standards-track RFCs.

A.3.2.5   Processing the Request
Assuming all of the checks in the previous subsections are passed, the UAS processing becomes method-
specifi c. Section A.5 covers the REGISTER request, Section A.6 covers the OPTIONS request, Section A.8 
covers the INVITE request, and Section A.10 covers the BYE request.

A.3.2.6   Generating the Response
When a UAS wishes to construct a response to a request, it follows the general procedures detailed in the 
following subsections. Additional behaviors specifi c to the response code in question, which are not detailed 
in this section, may also be required. Once all procedures associated with the creation of a response have been 
completed, the UAS hands the response back to the server transaction from which it received the request.

 Sending a Provisional Response
One largely nonmethod-specifi c guideline for the generation of responses is that UASs should not issue a 
provisional response for a non-INVITE request. Rather, UASs should generate a fi nal response to a non-IN-
VITE request as soon as possible. When a 100 (Trying) response is generated, any Timestamp header fi eld 
present in the request must be copied into this 100 (Trying) response. If there is a delay in generating the re-
sponse, the UAS should add a delay value into the Timestamp value in the response. This value must contain 
the difference between the time of sending of the response and receipt of the request, measured in seconds.
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Headers and Tags
The From fi eld of the response must equal the From header fi eld of the request. The Call-ID header fi eld of 
the response must equal the Call-ID header fi eld of the request. The CSeq header fi eld of the response must 
equal the CSeq fi eld of the request. The Via header fi eld values in the response must equal the Via header 
fi eld values in the request and must maintain the same ordering.

If a request contained a To tag in the request, the To header fi eld in the response must equal that of the 
request. However, if the To header fi eld in the request did not contain a tag, the URI in the To header fi eld 
in the response must equal the URI in the To header fi eld; additionally, the UAS must add a tag to the To 
header fi eld in the response (with the exception of the 100 (Trying) response, in which a tag may be pres-
ent). This serves to identify the UAS that is responding, possibly resulting in a component of a dialog ID. 
The same tag must be used for all responses to that request, both fi nal and provisional (again excepting the 
100 (Trying)). Procedures for the generation of tags are defi ned in the RFC.

A.3.2.7   Stateless UAS Behavior
A stateless UAS is a UAS that does not maintain transaction state. It replies to requests normally, but dis-
cards any state that would ordinarily be retained by a UAS after a response has been sent. If a stateless UAS 
receives a retransmission of a request, it regenerates the response and resends it, just as if it were replying 
to the fi rst instance of the request. A UAS cannot be stateless unless the request processing for that method 
would always result in the same response if the requests are identical. This rules out stateless registrars, for 
example. Stateless UASs do not use a transaction layer; they receive requests directly from the transport 
layer and send responses directly to the transport layer.

The stateless UAS role is needed primarily to handle unauthenticated requests for which a challenge 
response is issued. If unauthenticated requests were handled statefully, then malicious fl oods of unauthen-
ticated requests could create massive amounts of transaction state that might slow or completely halt call 
processing in a UAS, effectively creating a denial of service condition; for more information see the RFC.

The most important behaviors of a stateless UAS are the following:

A stateless UAS must not send provisional (1xx) responses;
A stateless UAS must not retransmit responses;
A stateless UAS must ignore ACK requests;
A stateless UAS must ignore CANCEL requests;
To header tags must be generated for responses in a stateless manner—in a manner that will gener-
ate the same tag for the same request consistently.

In all other respects, a stateless UAS behaves in the same manner as a stateful UAS. A UAS can operate in 
either a stateful or stateless mode for each new request.

A.3.3   Redirect Servers
In some architectures, it may be desirable to reduce the processing load on proxy servers that are responsible 
for routing requests, and improve signaling path robustness, by relying on redirection.

Redirection allows servers to push routing information for a request back in a response to the client, thereby 
taking themselves out of the loop of further messaging for this transaction while still aiding in locating the 
target of the request. When the originator of the request receives the redirection, it will send a new request 
based on the URI(s) it has received. By propagating URIs from the core of the network to its edges, redirec-
tion allows for considerable network scalability.

•
•
•
•
•
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A redirect server is logically constituted of a server transaction layer and a transaction user that has access to 
a location service of some kind (see Section A.5 for more on registrars and location services). This location 
service is effectively a database containing mappings between a single URI and a set of one or more alterna-
tive locations at which the target of that URI can be found.

A redirect server does not issue any SIP requests of its own. After receiving a request other than CANCEL, 
the server either refuses the request or gathers the list of alternative locations from the location service and 
returns a fi nal response of class 3xx. For well-formed CANCEL requests, it should return a 2xx response. 
This response ends the SIP transaction. The redirect server maintains transaction state for an entire SIP 
transaction. It is the responsibility of clients to detect forwarding loops between redirect servers.

When a redirect server returns a 3xx response to a request, it populates the list of (one or more) alternative 
locations into the Contact header fi eld. An “expires” parameter to the Contact header fi eld values may also 
be supplied to indicate the lifetime of the Contact data.

The Contact header fi eld contains URIs giving the new locations or user names to try, or may simply specify 
additional transport parameters. A 301 (Moved Permanently) or 302 (Moved Temporarily) response may 
also give the same location and username that was targeted by the initial request but specify additional trans-
port parameters such as a different server or multicast address to try, or a change of SIP transport from UDP 
to TCP or vice versa. However, redirect servers must not redirect a request to a URI equal to the one in the 
Request-URI; instead, provided that the URI does not point to itself, the server may proxy the request to the 
destination URI, or may reject it with a 404.

If a client is using an outbound proxy, and that proxy actually redirects requests, a potential arises for infi nite 
redirection loops. Note that a Contact header fi eld value may also refer to a different resource than the one 
originally called. For example, an SIP call connected to PSTN gateway may need to deliver a special infor-
mational announcement such as “The number you have dialed has been changed.”

A Contact response header fi eld can contain any suitable URI indicating where the called party can be 
reached, not limited to SIP URIs. For example, it could contain URIs for phones, fax, or irc (if they were 
defi ned) or a mailto: (RFC 2368) URL. 

The “expires” parameter of a Contact header fi eld value indicates how long the URI is valid. The value of the 
parameter is a number indicating seconds. If this parameter is not provided, the value of the Expires header 
fi eld determines how long the URI is valid. Malformed values should be treated as equivalent to 3600.

This provides a modest level of backwards compatibility with RFC 2543, which allowed absolute times in 
this header fi eld. If an absolute time is received, it will be treated as malformed, and then default to 3600.

Redirect servers must ignore features that are not understood (including unrecognized header fi elds, any unknown 
option tags in Require, or even method names) and proceed with the redirection of the request in question.

A.4   Canceling a Request
The previous section has discussed general UA behavior for generating requests and processing responses 
for requests of all methods. In this section, we discuss a general purpose method, called CANCEL.

The   CANCEL request, as the name implies, is used to cancel a previous request sent by a client. Specifi -
cally, it asks the UAS to cease processing the request and to generate an error response to that request. 
CANCEL has no effect on a request to which a UAS has already given a fi nal response. Because of this, it is 
most useful to CANCEL requests to which it can take a server a long time to respond. For this reason, CAN-
CEL is best for INVITE requests, which can take a long time to generate a response. In that usage, a UAS 
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that receives a CANCEL request for an INVITE, but has not yet sent a fi nal response, would “stop ringing,” 
and then respond to the INVITE with a specifi c error response (a 487).

CANCEL requests can be constructed and sent by both proxies and user agent clients. A stateful proxy responds 
to a CANCEL, rather than simply forwarding a response it would receive from a downstream element. For that 
reason, CANCEL is referred to as a “hop-by-hop” request since it is responded to at each stateful proxy hop.

A.4.1 Client Behavior
A CANCEL request should not be sent to cancel a request other than INVITE. Since requests other than 
INVITE are responded to immediately, sending a CANCEL for a non-INVITE request would always create 
a race condition.

The following procedures are used to construct a CANCEL request. The Request-URI, Call-ID, To, the 
numeric part of CSeq, and From header fi elds in the CANCEL request must be identical to those in the 
request being cancelled, including tags. A CANCEL constructed by a client must have only a single Via 
header fi eld value matching the top Via value in the request being cancelled. Using the same values for these 
header fi elds allows the   CANCEL to be matched with the request it cancels. However, the method part of the 
CSeq header fi eld must have a value of CANCEL. This allows it to be identifi ed and processed as a transac-
tion in its own right.

If the request being cancelled contains a Route header fi eld, the CANCEL request must include that Route 
header fi eld’s values. This is needed so that stateless proxies are able to route CANCEL requests properly. 
The CANCEL request must not contain any Require or Proxy-Require header fi elds. Once the CANCEL 
is constructed, the client should check whether it has received any response (provisional or fi nal) for the 
request being cancelled (herein referred to as the “original request”).

If no provisional response has been received, the CANCEL request must not be sent; rather, the client must 
wait for the arrival of a provisional response before sending the request. If the original request has generated 
a fi nal response, the CANCEL should not be sent, as it is an effective no-op, since CANCEL has no effect 
on requests that have already generated a fi nal response. When the client decides to send the CANCEL, it 
creates a client transaction for the CANCEL and passes it the CANCEL request along with the destination 
address, port, and transport. The destination address, port, and transport for the CANCEL must be identical 
to those used to send the original request.

If it was allowed to send the CANCEL before receiving a response for the previous request, the server could 
receive the CANCEL before the original request.

Note that both the transaction corresponding to the original request and the CANCEL transaction will 
complete independently. However, a UAC canceling a request cannot rely on receiving a 487 (Request 
Terminated) response for the original request, as an RFC 2543-compliant UAS will not generate such a 
response. If there is no fi nal response for the original request in 64*T1 seconds (T1 is defi ned in the RFC), 
the client should then consider the original transaction cancelled and should destroy the client transaction 
handling the original request.

A.4.2   Server Behavior
The CANCEL method requests that the TU at the server side cancel a pending transaction. The TU deter-
mines the transaction to be cancelled by taking the CANCEL request, and then assuming that the request 
method is anything but CANCEL or ACK and applying the transaction matching procedures described in the 
RFC. The matching transaction is the one to be cancelled.
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The processing of a CANCEL request at a server depends on the type of server. A stateless proxy will 
forward it, a stateful proxy might respond to it and generate some CANCEL requests of its own, and a UAS 
will respond to it.

A UAS fi rst processes the CANCEL request according to the general UAS processing described in Sec-
tion A.3.2. However, since CANCEL requests are hop-by-hop and cannot be resubmitted, they cannot be 
challenged by the server in order to get proper credentials in an Authorization header fi eld. Note also that 
CANCEL requests do not contain a Require header fi eld.

If the UAS did not fi nd a matching transaction for the CANCEL according to the procedure above, it should 
respond to the CANCEL with a 481 (Call Leg/Transaction Does Not Exist). If the transaction for the origi-
nal request still exists, the behavior of the UAS on receiving a CANCEL request depends on whether it has 
already sent a fi nal response for the original request. If it has, the CANCEL request has no effect on the pro-
cessing of the original request, no effect on any session state, and no effect on the responses generated for 
the original request. If the UAS has not issued a fi nal response for the original request, its behavior depends 
on the method of the original request. If the original request was an INVITE, the UAS should immediately 
respond to the INVITE with a 487 (Request Terminated). A CANCEL request has no impact on the process-
ing of transactions with any other method defi ned in this specifi cation.

Regardless of the method of the original request, as long as the CANCEL matched an existing transaction, 
the UAS answers the CANCEL request itself with a 200 (OK) response. This response is constructed follow-
ing the procedures described in Section A.3.2.6 noting that the To tag of the response to the CANCEL and 
the To tag in the response to the original request should be the same. The response to CANCEL is passed to 
the server transaction for transmission.

A.5  Registrations

A.5.1 Overview
SIP offers a discovery capability. If a user wants to initiate a session with another user, SIP must discover the 
current host(s) at which the destination user is reachable. This discovery process is frequently accomplished 
by SIP network elements such as proxy servers and redirect servers which are responsible for receiving a re-
quest, determining where to send it based on knowledge of the location of the user, and then sending it there. 
To do this, SIP network elements consult an abstract service known as a location service, which provides 
address bindings for a particular domain. These address bindings map an incoming SIP or SIPS URI—sip:
bob@biloxi.com, for example—to one or more URIs that are somehow “closer” to the desired user, sip:
bob@engineering.biloxi.com, for example. Ultimately, a proxy will consult a location service that maps a 
received URI to the user agent(s) at which the desired recipient is currently residing.

Registration creates bindings in a location service for a particular domain that associates an address-of-
record URI with one or more contact addresses. Thus, when a proxy for that domain receives a request 
whose  Request-URI matches the address-of-record, the proxy will forward the request to the contact ad-
dresses registered to that address-of-record. Generally, it only makes sense to register an address-of-record 
at a domain’s location service when requests for that address-of-record would be routed to that domain. In 
most cases, this means that the domain of the registration will need to match the domain in the URI of the 
address-of-record.

There are many ways by which the contents of the location service can be established. One way is adminis-
tratively. In the above example, Bob is known to be a member of the engineering department through access 
to a corporate database. However, SIP provides a mechanism for a UA to create a binding explicitly. This 
mechanism is known as registration. Registration entails sending a REGISTER request to a special type 
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of UAS known as a registrar. A registrar acts as the front end to the location service for a domain, reading 
and writing mappings based on the contents of REGISTER requests. This location service is then typically 
consulted by a proxy server that is responsible for routing requests for that domain.

An illustration of the overall registration process is given in Figure 3.2. Note that the registrar and proxy 
server are logical roles that can be played by a single device in a network; for purposes of clarity, the two are 
separated in this illustration. Also note that UAs may send requests through a proxy server in order to reach 
a registrar if the two are separate elements.

SIP does not mandate a particular mechanism for implementing the location service. The only requirement 
is that a registrar for some domain must be able to read and write data to the location service, and a proxy 
or a redirect server for that domain must be capable of reading that same data. A registrar may be co-located 
with a particular SIP proxy server for the same domain.

A.5.2  Constructing the   REGISTER Request
REGISTER requests add, remove, and query bindings. A REGISTER request can add a new binding 
between an address-of-record and one or more contact addresses. Registration on behalf of a particular 
address-of-record can be performed by a suitably authorized third party. A client can also remove previous 
bindings or query to determine which bindings are currently in place for an address-of-record. Except as 
noted, the construction of the REGISTER request and the behavior of clients sending a REGISTER request 
is identical to the general UAC behavior.

A REGISTER request does not establish a dialog. A UAC may include a Route header fi eld in a REGISTER 
request based on a pre-existing route set. The Record-Route header fi eld has no meaning in REGISTER 
requests or responses, and must be ignored if present. In particular, the UAC must not create a new route set 
based on the presence or absence of a Record-Route header fi eld in any response to a REGISTER request.

The following header fi elds, except Contact, must be included in a REGISTER request. A Contact header 
fi eld may be included.

Request-URI:  The Request-URI names the domain of the location service for which the registration is 
meant (for example, “sip:chicago.com”). The “userinfo” and “@” components of the SIP URI must 
not be present.

To:  The To header fi eld contains the address of record whose registration is to be created, queried, or 
modifi ed. The To header fi eld and the Request-URI fi eld typically differ, as the former contains a 
user name. This address-of-record must be a SIP URI or SIPS URI.

From:  The From header fi eld contains the address-of-record of the person responsible for the registra-
tion. The value is the same as the To header fi eld unless the request is a third-party registration.

Call-ID:  All registrations from a UAC should use the same Call-ID header fi eld value for registrations 
sent to a particular registrar.

If the same client were to use different Call-ID values, a registrar could not detect whether a delayed REG-
ISTER request might have arrived out of order.

CSeq:  The CSeq value guarantees proper ordering of REGISTER requests. A UA must increment the 
CSeq value by one for each REGISTER request with the same Call-ID.

Contact:  REGISTER requests may contain a Contact header fi eld with zero or more values containing 
address bindings.

UAs must not send a new registration (that is, containing new Contact header fi eld values, as opposed to a 
retransmission) until they have received a fi nal response from the registrar for the previous one or the previ-
ous REGISTER request has timed out.
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Figure 3.2: REGISTER example.

The following Contact header parameters have a special meaning in REGISTER requests:

action:  The “action” parameter from RFC 2543 has been deprecated. UACs should not use the “action” 
parameter.

expires:  The “expires” parameter indicates how long the UA would like the binding to be valid. The val-
ue is a number indicating seconds. If this parameter is not provided, the value of the Expires header 
fi eld is used instead. Implementations may treat values larger than 2**32-1 (4294967295 seconds or 
136 years) as equivalent to 2**32-1. Malformed values should be treated as equivalent to 3600.

Refer to the RFC for additional information on REGISTER usage.

A.5.3   Processing REGISTER Requests
A registrar is a UAS that responds to REGISTER requests and maintains a list of bindings that are accessible 
to proxy servers and redirect servers within its administrative domain. A registrar handles requests according 
to Section A.3.2 and Section A.12.2, but it accepts only REGISTER requests. A registrar must not generate 
6xx responses.

A registrar may redirect REGISTER requests as appropriate. One common usage would be for a registrar 
listening on a multicast interface to redirect multicast REGISTER requests to its own unicast interface with a 
302 (Moved Temporarily) response. Registrars must ignore the Record-Route header fi eld if it is included in 
a REGISTER request. Registrars must not include a Record-Route header fi eld in any response to a REG-
ISTER request. A registrar might receive a request that traversed a proxy which treats REGISTER as an 
unknown request and which added a Record-Route header fi eld value.

A registrar has to know (for example, through confi guration) the set of domain(s) for which it maintains 
bindings. REGISTER requests must be processed by a registrar in the order that they are received. REG-
ISTER requests must also be processed atomically, meaning that a particular REGISTER request is either 
processed completely or not at all. Each REGISTER message must be processed independently of any other 
registration or binding changes.
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When receiving a  REGISTER request, a registrar follows these steps.

1.  The registrar inspects the Request-URI to determine whether it has access to bindings for the 
domain identifi ed in the Request-URI. If not, and if the server also acts as a proxy server, the server 
should forward the request to the addressed domain, following the general behavior for proxying 
messages described in Section A.11.

2.  To guarantee that the registrar supports any necessary extensions, the registrar must process the 
Require header fi eld values as described for UASs in Section A.3.2.2.

3.  A registrar should authenticate the UAC. Mechanisms for the authentication of SIP user agents are 
described in the RFC. Registration behavior in no way overrides the generic authentication frame-
work for SIP. If no authentication mechanism is available, the registrar may take the From address 
as the asserted identity of the originator of the request.

4.  The registrar should determine if the authenticated user is authorized to modify registrations for this 
address-of-record. For example, a registrar might consult an authorization database that maps user 
names to a list of addresses-of-record for which that user has authorization to modify bindings. If 
the authenticated user is not authorized to modify bindings, the registrar must return a 403 (Forbid-
den) and skip the remaining steps.

In architectures that support third-party registration, one entity may be responsible for updating the registra-
tions associated with multiple addresses-of-record.

5.  The registrar extracts the address-of-record from the To header fi eld of the request. If the address-
of-record is not valid for the domain in the Request-URI, the registrar must send a 404 (Not Found) 
response and skip the remaining steps. The URI must then be converted to a canonical form. To do 
that, all URI parameters must be removed (including the user-param), and any escaped characters 
must be converted to their unescaped form. The result serves as an index into the list of bindings.

6.  The registrar checks whether the request contains the Contact header fi eld. If not, it skips to the last 
step. If the Contact header fi eld is present, the registrar checks if there is one Contact fi eld value 
that contains the special value “*” and an Expires fi eld. If the request has additional Contact fi elds 
or an expiration time other than zero, the request is invalid, and the server must return a 400 (In-
valid Request) and skip the remaining steps. If not, the registrar checks whether the Call-ID agrees 
with the value stored for each binding. If not, it must remove the binding. If it does agree, it must 
remove the binding only if the CSeq in the request is higher than the value stored for that binding. 
Otherwise, the update must be aborted and the request fails.

7.  The registrar now processes each contact address in the Contact header fi eld in turn. For each ad-
dress, it determines the expiration interval as follows:
a. If the fi eld value has an “expires” parameter, that value must be taken as the requested expiration.
b. If there is no such parameter, but the request has an Expires header fi eld, that value must be 

taken as the requested expiration.
c. If there is neither, a locally-confi gured default value must be taken as the requested expiration.

The registrar may choose an expiration less than the requested expiration interval. If and only if the re-
quested expiration interval is greater than zero and smaller than one hour and less than a registrar-confi gured 
minimum, the registrar may reject the registration with a response of 423 (Interval Too Brief). This response 
must contain a Min-Expires header fi eld that states the minimum expiration interval the registrar is willing to 
honor. It then skips the remaining steps.

Allowing the registrar to set the registration interval protects it against excessively frequent registration re-
freshes while limiting the state that it needs to maintain and decreasing the likelihood of registrations going 
stale. The expiration interval of a registration is frequently used in the creation of services. An example is a 
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follow-me service, where the user may only be available at a terminal for a brief period. Therefore, registrars 
should accept brief registrations; a request should only be rejected if the interval is so short that the refreshes 
would degrade registrar performance.

For each address, the registrar then searches the list of current bindings using the URI comparison rules. If 
the binding does not exist, it is tentatively added. If the binding does exist, the registrar checks the Call-ID 
value. If the Call-ID value in the existing binding differs from the Call-ID value in the request, the bind-
ing must be removed if the expiration time is zero and updated otherwise. If they are the same, the registrar 
compares the CSeq value. If the value is higher than that of the existing binding, it must update or remove 
the binding as above. If not, the update must be aborted and the request fails.

This algorithm ensures that out-of-order requests from the same UA are ignored.

Each binding record records the Call-ID and CSeq values from the request.

The binding updates must be committed (that is, made visible to the proxy or redirect server) if, and only 
if, all binding updates and additions succeed. If any one of them fails (for example, because the back-end 
database commit failed), the request must fail with a 500 (Server Error) response and all tentative binding 
updates must be removed.

8.  The registrar returns a 200 (OK) response. The response must contain Contact header fi eld values 
enumerating all current bindings. Each Contact value must feature an “expires” parameter indicat-
ing its expiration interval chosen by the registrar. The response should include a Date header fi eld.

A.6  Querying for  Capabilities
The SIP method  OPTIONS allows a UA to query another UA or a proxy server as to its capabilities. This allows 
a client to discover information about the supported methods, content types, extensions, codecs, etc. without 
“ringing” the other party. For example, before a client inserts a Require header fi eld into an INVITE listing an 
option that it is not certain the destination UAS supports, the client can query the destination UAS with an OP-
TIONS to see if this option is returned in a Supported header fi eld. All UAs must support the OPTIONS method.

The target of the OPTIONS request is identifi ed by the Request-URI, which could identify another UA or a 
SIP server. If the OPTIONS is addressed to a proxy server, the Request-URI is set without a user part, simi-
lar to the way a Request-URI is set for a REGISTER request.

Alternatively, a server receiving an OPTIONS request with a Max-Forwards header fi eld value of 0 may 
respond to the request regardless of the Request-URI.

This behavior is common with HTTP/1.1. This behavior can be used as a “traceroute” functionality to check 
the capabilities of individual hop servers by sending a series of OPTIONS requests with incremented Max-
Forwards values.

As is the case for general UA behavior, the transaction layer can return a timeout error if the OPTIONS 
yields no response. This may indicate that the target is unreachable and hence unavailable.

An OPTIONS request may be sent as part of an established dialog to query the peer on capabilities that may 
be utilized later in the dialog.

A.6.1  Construction of OPTIONS Request
An OPTIONS request is constructed using the standard rules for a SIP request. A Contact header fi eld may 
be present in an OPTIONS. An Accept header fi eld should be included to indicate the type of message body 
the UAC wishes to receive in the response. Typically, this is set to a format that is used to describe the media 
capabilities of a UA, such as SDP (application/sdp).
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The response to an OPTIONS request is assumed to be scoped to the Request-URI in the original request. 
However, only when an OPTIONS is sent as part of an established dialog is it guaranteed that future requests 
will be received by the server that generated the OPTIONS response.

Example OPTIONS request:

   OPTIONS sip:carol@chicago.com SIP/2.0
   Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bKhjhs8ass877
   Max-Forwards: 70
   To: <sip:carol@chicago.com>
   From: Alice <sip:alice@atlanta.com>;tag=1928301774
   Call-ID: a84b4c76e66710
   CSeq: 63104 OPTIONS
   Contact: <sip:alice@pc33.atlanta.com>
   Accept: application/sdp
   Content-Length: 0

A.6.2   Processing of OPTIONS Request
The response to an OPTIONS is constructed using the standard rules for a SIP response. The response code 
chosen must be the same that would have been chosen had the request been an INVITE. That is, a 200 (OK) 
would be returned if the UAS is ready to accept a call, a 486 (Busy Here) would be returned if the UAS is 
busy, etc. This allows an OPTIONS request to be used to determine the basic state of a UAS, which can be 
an indication of whether the UAS will accept an INVITE request.

An OPTIONS request received within a dialog generates a 200 (OK) response that is identical to one con-
structed outside a dialog and does not have any impact on the dialog.

This use of OPTIONS has limitations due to the differences in proxy handling of OPTIONS and INVITE 
requests. While a forked INVITE can result in multiple 200 (OK) responses being returned, a forked OP-
TIONS will only result in a single 200 (OK) response, since it is treated by proxies using the non-INVITE 
handling. 

If the response to an OPTIONS is generated by a proxy server, the proxy returns a 200 (OK), listing the 
capabilities of the server. The response does not contain a message body.

Allow, Accept, Accept-Encoding, Accept-Language, and Supported header fi elds should be present in a 
200 (OK) response to an OPTIONS request. If the response is generated by a proxy, the Allow header fi eld 
should be omitted as it is ambiguous since a proxy is method agnostic. Contact header fi elds may be present 
in a 200 (OK) response and have the same semantics as in a 3xx response. That is, they may list a set of 
alternative names and methods of reaching the user. A Warning header fi eld may be present.

A message body may be sent, the type of which is determined by the Accept header fi eld in the OPTIONS 
request (application/sdp is the default if the Accept header fi eld is not present). If the types include one that 
can describe media capabilities, the UAS should include a body in the response for that purpose. 

Example OPTIONS response generated by a UAS (corresponding to the request in Section A.6.1):

   SIP/2.0 200 OK
   Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bKhjhs8ass877
    ;received=192.0.2.4
   To: <sip:carol@chicago.com>;tag=93810874
   From: Alice <sip:alice@atlanta.com>;tag=1928301774
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   Call-ID: a84b4c76e66710
   CSeq: 63104 OPTIONS
   Contact: <sip:carol@chicago.com>
   Contact: <mailto:carol@chicago.com>
   Allow: INVITE, ACK, CANCEL, OPTIONS, BYE
   Accept: application/sdp
   Accept-Encoding: gzip
   Accept-Language: en
   Supported: foo
   Content-Type: application/sdp
   Content-Length: 274

   (SDP not shown)

A.7   Dialogs
A key concept for a user agent is that of a dialog. A dialog represents a peer-to-peer SIP relationship be-
tween two user agents that persists for some time. The dialog facilitates sequencing of messages between 
the user agents and proper routing of requests between both of them. The dialog represents a context in 
which to interpret SIP messages. Section A.3 discussed method independent UA processing for requests and 
responses outside of a dialog. This section discusses how those requests and responses are used to construct 
a dialog, and then how subsequent requests and responses are sent within a dialog.

A dialog is identifi ed at each UA with a dialog ID, which consists of a Call-ID value, a local tag and a 
remote tag. The dialog ID at each UA involved in the dialog is not the same. Specifi cally, the local tag at one 
UA is identical to the remote tag at the peer UA. The tags are opaque tokens that facilitate the generation of 
unique dialog IDs.

A dialog ID is also associated with all responses and with any request that contains a tag in the To fi eld. The 
rules for computing the dialog ID of a message depend on whether the SIP element is a UAC or UAS. For a 
UAC, the  Call-ID value of the dialog ID is set to the Call-ID of the message, the remote tag is set to the tag 
in the To fi eld of the message, and the local tag is set to the tag in the From fi eld of the message (these rules 
apply to both requests and responses). As one would expect for a UAS, the Call-ID value of the dialog ID 
is set to the Call-ID of the message, the remote tag is set to the tag in the From fi eld of the message, and the 
local tag is set to the tag in the To fi eld of the message.

A dialog contains certain pieces of state needed for further message transmissions within the dialog. This 
state consists of the dialog ID, a local sequence number (used to order requests from the UA to its peer), a 
remote sequence number (used to order requests from its peer to the UA), a local URI, a remote URI, remote 
target, a boolean fl ag called secure, and a route set, which is an ordered list of URIs. The route set is the list 
of servers that need to be traversed to send a request to the peer. A dialog can also be in the “early” state, 
which occurs when it is created with a provisional response, and then transition to the “confi rmed” state 
when a 2xx fi nal response arrives. For other responses, or if no response arrives at all on that dialog, the 
early dialog terminates.

A.7.1  Creation of a Dialog
Dialogs are created through the generation of nonfailure responses to requests with specifi c methods. Within 
this specifi cation, only 2xx and 101–199 responses with a To tag, where the request was INVITE, will estab-
lish a dialog. A dialog established by a nonfi nal response to a request is in the “early” state and it is called an 
early dialog. Extensions may defi ne other means for creating dialogs. Section A.8 gives more details that are 
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specifi c to the INVITE method. Here, we describe the process for creation of dialog state that is not depen-
dent on the method. UAs must assign values to the dialog ID components as described below.

A.7.1.1    UAS Behavior
When a UAS responds to a request with a response that establishes a dialog (such as a 2xx to INVITE), 
the UAS must copy all Record-Route header fi eld values from the request into the response (including the 
URIs, URI parameters, and any Record-Route header fi eld parameters, whether they are known or unknown 
to the UAS) and must maintain the order of those values. The UAS must add a Contact header fi eld to 
the response. The Contact header fi eld contains an address where the UAS would like to be contacted for 
subsequent requests in the dialog (which includes the ACK for a 2xx response in the case of an INVITE). 
Generally, the host portion of this URI is the IP address or FQDN of the host. The URI provided in the Con-
tact header fi eld must be a SIP or SIPS URI. If the request that initiated the dialog contained a SIPS URI in 
the Request-URI or in the top Record-Route header fi eld value (if there was any), or the Contact header fi eld 
(if there was no Record-Route header fi eld), the Contact header fi eld in the response must be a SIPS URI. 
The URI should have global scope (that is, the same URI can be used in messages outside this dialog). The 
same way, the scope of the URI in the Contact header fi eld of the INVITE is not limited to this dialog either. 
It can therefore be used in messages to the UAC even outside this dialog.

The UAS then constructs the state of the dialog. This state must be maintained for the duration of the dialog. 
If the request arrived over TLS, and the Request-URI contained a SIPS URI, the “secure” fl ag is set to TRUE.

The route set must be set to the list of URIs in the Record-Route header fi eld from the request, taken in order 
and preserving all URI parameters. If no Record-Route header fi eld is present in the request, the route set 
must be set to the empty set. This route set, even if empty, overrides any pre-existing route set for future 
requests in this dialog. The remote target must be set to the URI from the Contact header fi eld of the request.

The remote sequence number must be set to the value of the sequence number in the CSeq header fi eld of 
the request. The local sequence number must be empty. The call identifi er component of the dialog ID must 
be set to the value of the Call-ID in the request. The local tag component of the dialog ID must be set to the 
tag in the To fi eld in the response to the request (which always includes a tag), and the remote tag compo-
nent of the dialog ID must be set to the tag from the From fi eld in the request. A UAS must be prepared to 
receive a request without a tag in the From fi eld, in which case the tag is considered to have a value of null.

This is to maintain backwards compatibility with RFC 2543, which did not mandate From tags.

The remote URI must be set to the URI in the From fi eld, and the local URI must be set to the URI in the To fi eld.

A.7.1.2    UAC Behavior
When a UAC sends a request that can establish a dialog (such as an INVITE), it must provide a SIP or SIPS 
URI with global scope (i.e., the same SIP URI can be used in messages outside this dialog) in the Contact 
header fi eld of the request. If the request has a Request-URI or a topmost Route header fi eld value with a 
SIPS URI, the Contact header fi eld must contain a SIPS URI.

When a UAC receives a response that establishes a dialog, it constructs the state of the dialog. This state 
must be maintained for the duration of the dialog. If the request was sent over TLS, and the Request-URI 
contained a SIPS URI, the “secure” fl ag is set to TRUE.

The route set must be set to the list of URIs in the Record-Route header fi eld from the response, taken in reverse 
order and preserving all URI parameters. If no Record-Route header fi eld is present in the response, the route set 
must be set to the empty set. This route set, even if empty, overrides any preexisting route set for future requests 
in this dialog. The remote target must be set to the URI from the Contact header fi eld of the response.
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The local sequence number must be set to the value of the sequence number in the CSeq header fi eld of the 
request. The remote sequence number must be empty (it is established when the remote UA sends a request 
within the dialog). The call identifi er component of the dialog ID must be set to the value of the Call-ID in 
the request. The local tag component of the dialog ID must be set to the tag in the From fi eld in the request, 
and the remote tag component of the dialog ID must be set to the tag in the To fi eld of the response. A UAC 
must be prepared to receive a response without a tag in the To fi eld, in which case the tag is considered to 
have a value of null.

This is to maintain backwards compatibility with RFC 2543, which did not mandate To tags. The remote 
URI must be set to the URI in the To fi eld, and the local URI must be set to the URI in the From fi eld.

A.7.2   Requests within a Dialog
Once a dialog has been established between two UAs, either of them may initiate new transactions as needed 
within the dialog. The UA sending the request will take the UAC role for the transaction. The UA receiv-
ing the request will take the UAS role. Note that these may be different roles than the UAs held during the 
transaction that established the dialog.

Requests within a dialog may contain Record-Route and Contact header fi elds. However, these requests do 
not cause the dialog’s route set to be modifi ed, although they may modify the remote target URI. Specifi -
cally, requests that are not target refresh requests do not modify the dialog’s remote target URI, and requests 
that are target refresh requests do. For dialogs that have been established with an INVITE, the only target 
refresh request defi ned is re-INVITE. Other extensions may defi ne different target refresh requests for dia-
logs established in other ways. Note that an ACK is not a target refresh request. Target refresh requests only 
update the dialog’s remote target URI, and not the route set formed from the Record-Route. Updating the 
latter would introduce severe backwards compatibility problems with RFC 2543-compliant systems.

A.7.2.1   UAC Behavior

 Generating the Request
A request within a dialog is constructed by using many of the components of the state stored as part of the 
dialog. The URI in the To fi eld of the request must be set to the remote URI from the dialog state. The tag 
in the To header fi eld of the request must be set to the remote tag of the dialog ID. The From URI of the re-
quest must be set to the local URI from the dialog state. The tag in the From header fi eld of the request must 
be set to the local tag of the dialog ID. If the value of the remote or local tags is null, the tag parameter must 
be omitted from the To or From header fi elds, respectively.

Usage of the URI from the To and From fi elds in the original request within subsequent requests is done for 
backwards compatibility with RFC 2543, which used the URI for dialog identifi cation. In this specifi cation, 
only the tags are used for dialog identifi cation. It is expected that mandatory refl ection of the original To and 
From URI in mid-dialog requests will be deprecated in a subsequent revision of this specifi cation.

The Call-ID of the request must be set to the Call-ID of the dialog. Requests within a dialog must contain 
strictly monotonically increasing and contiguous CSeq sequence numbers (increasing-by-one) in each direc-
tion (excepting ACK and CANCEL, of course, whose numbers equal the requests being acknowledged or 
cancelled). Therefore, if the local sequence number is not empty, the value of the local sequence number 
must be incremented by one, and this value must be placed into the CSeq header fi eld. If the local sequence 
number is empty, an initial value must be chosen. The method fi eld in the CSeq header fi eld value must 
match the method of the request.

Minoli_Book.indb   144Minoli_Book.indb   144 3/9/2006   6:30:19 PM3/9/2006   6:30:19 PM



Basic VoIP Signaling and SIP Concepts

145

With a length of 32 bits, a client could generate, within a single call, one request a second for about 136 
years before needing to wrap around. The initial value of the sequence number is chosen so that subsequent 
requests within the same call will not wrap around. A nonzero initial value allows clients to use a time-based 
initial sequence number. A client could, for example, choose the 31 most signifi cant bits of a 32-bit second 
clock as an initial sequence number.

The UAC uses the remote target and route set to build the Request-URI and Route header fi eld of the re-
quest. If the route set is empty, the UAC must place the remote target URI into the Request-URI. The UAC 
must not add a Route header fi eld to the request. If the route set is not empty, and the fi rst URI in the route 
set contains the lr parameter, the UAC must place the remote target URI into the Request-URI and must 
include a Route header fi eld containing the route set values in order, including all parameters.

If the route set is not empty, and its fi rst URI does not contain the lr parameter, the UAC must place the fi rst 
URI from the route set into the Request-URI, stripping any parameters that are not allowed in a Request-
URI. The UAC must add a Route header fi eld containing the remainder of the route set values in order, 
including all parameters. The UAC must then place the remote target URI into the Route header fi eld as the 
last value.

For example, if the remote target is sip:user@remoteua and the route set contains:

   <sip:proxy1>,<sip:proxy2>,<sip:proxy3;lr>,<sip:proxy4>

The request will be formed with the following Request-URI and Route header fi eld:

  METHOD sip:proxy1
  Route: <sip:proxy2>,<sip:proxy3;lr>,<sip:proxy4>,<sip:user@remoteua>

If the fi rst URI of the route set does not contain the lr parameter, the proxy indicated does not understand the 
routing mechanisms described in this RFC and will act as specifi ed in RFC 2543, replacing the Request-URI 
with the fi rst Route header fi eld value it receives while forwarding the message. Placing the Request-URI 
at the end of the Route header fi eld preserves the information in that Request-URI across the strict router (it 
will be returned to the Request-URI when the request reaches a loose-router).

A UAC should include a Contact header fi eld in any target refresh requests within a dialog, and unless there 
is a need to change it, the URI should be the same as used in previous requests within the dialog. If the 
“secure” fl ag is true, that URI must be a SIPS URI. A Contact header fi eld in a target refresh request updates 
the remote target URI. This allows a UA to provide a new contact address, should its address change during 
the duration of the dialog.

However, requests that are not target refresh requests do not affect the remote target URI for the dialog. 
Once the request has been constructed, the address of the server is computed and the request is sent, using 
the same procedures for requests outside of a dialog. The procedures in Section A.3.1.2 will normally result 
in the request being sent to the address indicated by the topmost Route header fi eld value or the Request-
URI if no Route header fi eld is present. Subject to certain restrictions, they allow the request to be sent to an 
alternate address (such as a default outbound proxy not represented in the route set).

 Processing the Responses
The UAC will receive responses to the request from the transaction layer. If the client transaction returns 
a timeout, this is treated as a 408 (Request Timeout) response. The behavior of a UAC that receives a 3xx 
response for a request sent within a dialog is the same as if the request had been sent outside a dialog. Note, 
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however, that when the UAC tries alternative locations, it still uses the route set for the dialog to build the 
Route header of the request.

When a UAC receives a 2xx response to a target refresh request, it must replace the dialog’s remote target 
URI with the URI from the Contact header fi eld in that response, if present.

If the response for a request within a dialog is a 481 (Call/Transaction Does Not Exist) or a 408 (Request 
Timeout), the UAC should terminate the dialog. A UAC should also terminate a dialog if no response at all is 
received for the request (the client transaction would inform the TU about the timeout.)

For INVITE initiated dialogs, terminating the dialog consists of sending a BYE.

A.7.2.2   UAS Behavior
Requests sent within a dialog, as any other requests, are atomic. If a particular request is accepted by the 
UAS, all the state changes associated with it are performed. If the request is rejected, none of the state 
changes are performed. Note that some requests, such as INVITEs, affect several pieces of state.

The UAS will receive the request from the transaction layer. If the request has a tag in the To header fi eld, 
the UAS core computes the dialog identifi er corresponding to the request and compares it with existing dia-
logs. If there is a match, this is a mid-dialog request. In that case, the UAS fi rst applies the same processing 
rules for requests outside of a dialog.

If the request has a tag in the To header fi eld, but the dialog identifi er does not match any existing dialogs, 
the UAS may have crashed and restarted, or it may have received a request for a different (possibly failed) 
UAS (the UASs can construct the To tags so that a UAS can identify that the tag was for a UAS for which it is 
providing recovery). Another possibility is that the incoming request has been simply misrouted. Based on the 
To tag, the UAS may either accept or reject the request. Accepting the request for acceptable To tags provides 
robustness, so that dialogs can persist even through crashes. UAs wishing to support this capability must take 
into consideration some issues such as choosing monotonically increasing CSeq sequence numbers even across 
reboots, reconstructing the route set, and accepting out-of-range RTP timestamps and sequence numbers.

If the UAS wishes to reject the request because it does not wish to recreate the dialog, it must respond to the 
request with a 481 (Call/Transaction Does Not Exist) status code and pass that to the server transaction.

Requests that do not change in any way the state of a dialog may be received within a dialog (for example, 
an OPTIONS request). They are processed as if they had been received outside the dialog.

If the remote sequence number is empty, it must be set to the value of the sequence number in the CSeq 
header fi eld value in the request. If the remote sequence number was not empty, but the sequence number of 
the request is lower than the remote sequence number, the request is out of order and must be rejected with a 
500 (Server Internal Error) response. If the remote sequence number was not empty, and the sequence num-
ber of the request is greater than the remote sequence number, the request is in order. It is possible for the 
CSeq sequence number to be higher than the remote sequence number by more than one. This is not an error 
condition, and a UAS should be prepared to receive and process requests with CSeq values more than one 
higher than the previous received request. The UAS must then set the remote sequence number to the value 
of the sequence number in the CSeq header fi eld value in the request.

If a proxy challenges a request generated by the UAC, the UAC has to resubmit the request with credentials. 
The resubmitted request will have a new CSeq number. The UAS will never see the fi rst request, and thus, it 
will notice a gap in the CSeq number space. Such a gap does not represent any error condition.

When a UAS receives a target refresh request, it must replace the dialog’s remote target URI with the URI 
from the Contact header fi eld in that request, if present.
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A.7.3 Termination of a Dialog
Independent of the method, if a request outside of a dialog generates a non-2xx fi nal response, any early 
dialogs created through provisional responses to that request are terminated. The mechanism for terminat-
ing confi rmed dialogs is method-specifi c. In this specifi cation, the BYE method terminates a session and the 
dialog associated with it.

A.8   Initiating a Session
A.8.1  Overview
When a user agent client desires to initiate a session (for example, audio, video, or a game), it formulates an 
INVITE request. The INVITE request asks a server to establish a session. This request may be forwarded by 
proxies, eventually arriving at one or more UAS that can potentially accept the invitation. These UASs will 
frequently need to query the user about whether to accept the invitation. After some time, those UASs can 
accept the invitation (meaning the session is to be established) by sending a 2xx response. If the invitation 
is not accepted, a 3xx, 4xx, 5xx or 6xx response is sent, depending on the reason for the rejection. Before 
sending a fi nal response, the UAS can also send provisional responses (1xx) to advise the UAC of progress 
in contacting the called user.

After possibly receiving one or more provisional responses, the UAC will get one or more 2xx responses or 
one non-2xx fi nal response. Because of the protracted amount of time it can take to receive fi nal responses to 
INVITE, the reliability mechanisms for  INVITE transactions differ from those of other requests (like OP-
TIONS). Once it receives a fi nal response, the UAC needs to send an ACK for every fi nal response it receives. 
The procedure for sending this ACK depends on the type of response. For fi nal responses between 300 and 
699, the ACK processing is done in the transaction layer and follows one set of rules. For 2xx responses, the 
ACK is generated by the UAC core.

A 2xx response to an INVITE establishes a session, and it also creates a dialog between the UA that issued 
the INVITE and the UA that generated the 2xx response. Therefore, when multiple 2xx responses are re-
ceived from different remote UAs (because the INVITE forked), each 2xx establishes a different dialog. All 
these dialogs are part of the same call.

This section provides details on the establishment of a session using INVITE. A UA that supports INVITE 
must also support ACK, CANCEL and BYE.

A.8.2   UAC Processing

A.8.2.1  Creating the Initial INVITE
Since the initial INVITE represents a request outside of a dialog, its construction follows the procedures of 
Section A.3.1.1. Additional processing is required for the specifi c case of INVITE. An Allow header fi eld 
should be present in the INVITE. It indicates what methods can be invoked within a dialog, on the UA 
sending the INVITE, for the duration of the dialog. For example, a UA capable of receiving INFO requests 
within a dialog should include an Allow header fi eld listing the INFO method. A Supported header fi eld 
should be present in the INVITE. It enumerates all the extensions understood by the UAC.

An Accept header fi eld may be present in the INVITE. It indicates which Content-Types are acceptable to 
the UA, in both the response received by it, and in any subsequent requests sent to it within dialogs estab-
lished by the INVITE. The Accept header fi eld is especially useful for indicating support of various session 
description formats.

The UAC may add an Expires header fi eld to limit the validity of the invitation. If the time indicated in the 
Expires header fi eld is reached and no fi nal answer for the INVITE has been received, the UAC core should 
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generate a CANCEL request for the INVITE. A UAC may also fi nd it useful to add, among others, Subject, 
Organization and User-Agent header fi elds. They all contain information related to the INVITE. The UAC 
may choose to add a message body to the INVITE. 

There are special rules for message bodies that contain a session description—their corresponding Content-
Disposition is “session.” SIP uses an offer/answer model where one UA sends a session description, called 
the offer, which contains a proposed description of the session. The offer indicates the desired communi-
cations means (audio, video, games), parameters of those means (such as codec types) and addresses for 
receiving media from the answerer. The other UA responds with another session description, called the an-
swer, which indicates which communications means are accepted, the parameters that apply to those means, 
and addresses for receiving media from the offerer. An offer/answer exchange is within the context of a 
dialog, so that if a SIP INVITE results in multiple dialogs, each is a separate offer/answer exchange. The 
offer/answer model defi nes restrictions on when offers and answers can be made (for example, you cannot 
make a new offer while one is in progress). This results in restrictions on where the offers and answers can 
appear in SIP messages. In this specifi cation, offers and answers can only appear in INVITE requests and 
responses, and ACK. The usage of offers and answers is further restricted. For the initial INVITE transac-
tion, the rules are:

The initial offer must be in either an INVITE or, if not there, in the fi rst reliable nonfailure message 
from the UAS back to the UAC. In this specifi cation, that is the fi nal 2xx response.
If the initial offer is in an INVITE, the answer must be in a reliable nonfailure message from UAS 
back to UAC which is correlated to that INVITE. For this specifi cation, that is only the fi nal 2xx 
response to that INVITE. That same exact answer may also be placed in any provisional responses 
sent prior to the answer. The UAC must treat the fi rst session description it receives as the answer, 
and must ignore any session descriptions in subsequent responses to the initial INVITE.
If the initial offer is in the fi rst reliable nonfailure message from the UAS back to UAC, the answer 
must be in the acknowledgment for that message (in this specifi cation, ACK for a 2xx response).
After having sent or received an answer to the fi rst offer, the UAC may generate subsequent offers 
in requests based on rules specifi ed for that method, but only if it has received answers to any previ-
ous offers, and has not sent any offers to which it has not gotten an answer.
Once the UAS has sent or received an answer to the initial offer, it must not generate subsequent of-
fers in any responses to the initial INVITE. This means that a UAS based on this specifi cation alone 
can never generate subsequent offers until completion of the initial transaction.

Concretely, the above rules specify two exchanges for UAs compliant to this specifi cation alone—the 
offer is in the INVITE, and the answer in the 2xx (and possibly in a 1xx as well, with the same value), or 
the offer is in the 2xx, and the answer is in the ACK. All user agents that support INVITE must support 
these two exchanges.

The  Session Description Protocol (SDP) (RFC 2327) must be supported by all user agents as a means to 
describe sessions. The restrictions of the offer-answer model just described only apply to bodies whose 
Content-Disposition header fi eld value is “session.” Therefore, it is possible that both the  INVITE and the 
ACK contain a body message (for example, the INVITE carries a photo (Content-Disposition: render) and 
the ACK a session description (Content-Disposition: session)). If the Content-Disposition header fi eld is 
missing, bodies of Content-Type application/sdp imply the disposition “session,” while other content types 
imply “render.” Once the INVITE has been created, the UAC follows the procedures defi ned for sending 
requests outside of a dialog. This results in the construction of a client transaction that will ultimately send 
the request and deliver responses to the UAC.

•

•

•

•

•
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A.8.2.2  Processing INVITE Responses
Once the INVITE has been passed to the INVITE client transaction, the UAC waits for responses for the 
INVITE. If the INVITE client transaction returns a timeout rather than a response, the TU acts as if a 408 
(Request Timeout) response had been received, as described in Section A.3.1.3.

 1xx Responses
Zero, one, or multiple provisional responses may arrive before one or more fi nal responses are received. Pro-
visional responses for an INVITE request can create “early dialogs.” If a provisional response has a tag in 
the To fi eld, and if the dialog ID of the response does not match an existing dialog, one is constructed using 
the procedures defi ned in Section A.7.1.2.

The early dialog will only be needed if the UAC needs to send a request to its peer within the dialog before 
the initial INVITE transaction completes. Header fi elds present in a provisional response are applicable as 
long as the dialog is in the early state (for example, an Allow header fi eld in a provisional response contains 
the methods that can be used in the dialog while this is in the early state).

 3xx Responses
A 3xx response may contain one or more Contact header fi eld values providing new addresses where the 
callee might be reachable. Depending on the status code of the 3xx response, the UAC may choose to try 
those new addresses.

 4xx, 5xx and 6xx Responses
A single non-2xx fi nal response may be received for the INVITE. 4xx, 5xx and 6xx responses may contain 
a Contact header fi eld value indicating the location where additional information about the error can be 
found. Subsequent fi nal responses (which would only arrive under error conditions) must be ignored. All 
early dialogs are considered terminated upon reception of the non-2xx fi nal response. After having received 
the non-2xx fi nal response the UAC core considers the INVITE transaction completed. The INVITE client 
transaction handles the generation of ACKs for the response.

 2xx Responses
Multiple 2xx responses may arrive at the UAC for a single INVITE request due to a forking proxy. Each 
response is distinguished by the tag parameter in the To header fi eld, and each represents a distinct dialog, 
with a distinct dialog identifi er.

If the dialog identifi er in the 2xx response matches the dialog identifi er of an existing dialog, the dialog must 
be transitioned to the “confi rmed” state, and the route set for the dialog must be recomputed based on the 
2xx response using the procedures of Section A.7.2.1. Otherwise, a new dialog in the “confi rmed” state must 
be constructed using the procedures of Section A.7.1.2.

Note that the only piece of state that is recomputed is the route set. Other pieces of state such as the highest 
sequence numbers (remote and local) sent within the dialog are not recomputed. The route set only is recom-
puted for backwards compatibility. RFC 2543 did not mandate mirroring of the Record-Route header fi eld 
in a 1xx, only 2xx. However, we cannot update the entire state of the dialog, since mid-dialog requests may 
have been sent within the early dialog, modifying the sequence numbers, for example.

The UAC core must generate an ACK request for each 2xx received from the transaction layer. The header 
fi elds of the ACK are constructed in the same way as for any request sent within a dialog with the excep-
tion of the CSeq and the header fi elds related to authentication. The sequence number of the CSeq header 
fi eld must be the same as the INVITE being acknowledged, but the CSeq method must be ACK. The ACK 
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must contain the same credentials as the INVITE. If the 2xx contains an offer (based on the rules above), the 
ACK must carry an answer in its body. If the offer in the 2xx response is not acceptable, the UAC core must 
generate a valid answer in the ACK and then send a BYE immediately.

Once the ACK has been constructed, there is a need to determine the destination address, port and transport. 
However, the request is passed to the transport layer directly for transmission, rather than a client transac-
tion. This is because the UAC core handles retransmissions of the ACK, not the transaction layer. The ACK 
must be passed to the client transport every time a retransmission of the 2xx fi nal response that triggered the 
ACK arrives.

The UAC core considers the INVITE transaction completed 64*T1 seconds after the reception of the fi rst 
2xx response. At this point all the early dialogs that have not transitioned to established dialogs are termi-
nated. Once the INVITE transaction is considered completed by the UAC core, no more new 2xx responses 
are expected to arrive.

If, after acknowledging any 2xx response to an INVITE, the UAC does not want to continue with that dia-
log, then the UAC must terminate the dialog by sending a BYE request.

A.8.3   UAS Processing

A.8.3.1  Processing of the INVITE
The UAS core will receive  INVITE requests from the transaction layer. It fi rst performs the request process-
ing procedures of Section A.3.2 which are applied for both requests inside and outside of a dialog.

Assuming these processing states are completed without generating a response, the UAS core performs the 
additional processing steps:

1.  If the request is an INVITE that contains an Expires header fi eld, the UAS core sets a timer for the 
number of seconds indicated in the header fi eld value. When the timer fi res, the invitation is con-
sidered to be expired. If the invitation expires before the UAS has generated a fi nal response, a 487 
(Request Terminated) response should be generated.

2.  If the request is a mid-dialog request, the method-independent processing described in Section 
A.7.2.2 is fi rst applied. It might also modify the session.

3.  If the request has a tag in the To header fi eld but the dialog identifi er does not match any of the 
existing dialogs, the UAS may have crashed and restarted, or may have received a request for a dif-
ferent (possibly failed) UAS.

Processing from here forward assumes that the INVITE is outside of a dialog, and is thus for the purposes of 
establishing a new session.

The INVITE may contain a session description, in which case the UAS is being presented with an offer 
for that session. It is possible that the user is already a participant in that session, even though the INVITE 
is outside of a dialog. This can happen when a user is invited to the same multicast conference by mul-
tiple other participants. If desired, the UAS may use identifi ers within the session description to detect this 
duplication. For example, SDP contains a session ID and version number in the origin (o) fi eld. If the user 
is already a member of the session, and the session parameters contained in the session description have not 
changed, the UAS may silently accept the INVITE (that is, send a 2xx response without prompting the user).

If the INVITE does not contain a session description, the UAS is being asked to participate in a session, and 
the UAC has asked that the UAS provide the offer of the session. It must provide the offer in its fi rst nonfail-
ure reliable message back to the UAC. In this specifi cation, that is a 2xx response to the INVITE. The UAS 
can indicate progress, accept, redirect, or reject the invitation. In all of these cases, it formulates a response 
using the procedures described in Section A.3.2.6.
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Progress
If the UAS is not able to answer the invitation immediately, it can choose to indicate some kind of progress to 
the UAC (for example, an indication that a phone is ringing). This is accomplished with a provisional response 
between 101 and 199. These provisional responses establish early dialogs and therefore follow the procedures 
of Section A.7.1.1 in addition to those of Section A.3.2.6. A UAS may send as many provisional responses as 
it likes. Each of these must indicate the same dialog ID. However, these will not be delivered reliably.

If the UAS desires an extended period of time to answer the INVITE, it will need to ask for an “extension” 
in order to prevent proxies from canceling the transaction. A proxy has the option of canceling a transaction 
when there is a gap of 3 minutes between responses in a transaction. To prevent cancellation, the UAS must 
send a non-100 provisional response at every minute, to handle the possibility of lost provisional responses.

An INVITE transaction can go on for extended durations when the user is placed on hold, or when inter-
working with PSTN systems which allow communications to take place without answering the call. The 
latter is common in Interactive Voice Response (IVR) systems.

 The INVITE is Redirected
If the UAS decides to redirect the call, a 3xx response is sent. A 300 (Multiple Choices), 301 (Moved Per-
manently) or 302 (Moved Temporarily) response should contain a Contact header fi eld containing one or 
more URIs of new addresses to be tried. The response is passed to the INVITE server transaction, which will 
deal with its retransmissions.

 The INVITE is Rejected
A common scenario occurs when the callee is currently not willing or able to take additional calls at this 
end system. A 486 (Busy Here) should be returned in such a scenario. If the UAS knows that no other end 
system will be able to accept this call, a 600 (Busy Everywhere) response should be sent instead. However, 
it is unlikely that a UAS will be able to know this in general, and thus this response will not usually be used. 
The response is passed to the INVITE server transaction, which will deal with its retransmissions.

A UAS rejecting an offer contained in an INVITE should return a 488 (Not Acceptable Here) response. Such 
a response should include a Warning header fi eld value explaining why the offer was rejected.

The  INVITE is Accepted
The UAS core generates a 2xx response. This response establishes a dialog, and therefore follows the proce-
dures of Section A.7.1.1 in addition to those of Section A.3.2.6.

A 2xx response to an INVITE should contain the Allow header fi eld and the Supported header fi eld, and 
may contain the Accept header fi eld. Including these header fi elds allows the UAC to determine the features 
and extensions supported by the UAS for the duration of the call, without probing.

If the INVITE request contained an offer, and the UAS had not yet sent an answer, the 2xx must contain an an-
swer. If the INVITE did not contain an offer, the 2xx must contain an offer if the UAS had not yet sent an offer.

Once the response has been constructed, it is passed to the INVITE server transaction. Note, however, that 
the INVITE server transaction will be destroyed as soon as it receives this fi nal response and passes it to the 
transport. Therefore, it is necessary to periodically pass the response directly to the transport until the ACK 
arrives. The 2xx response is passed to the transport with an interval that starts at T1 seconds and doubles for 
each retransmission until it reaches T2 seconds (T1 and T2 are defi ned in the RFC). Response retransmis-
sions cease when an ACK request for the response is received. This is independent of whatever transport 
protocols are used to send the response.
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Since 2xx is retransmitted end-to-end, there may be hops between UAS and UAC that are UDP. To ensure 
reliable delivery across these hops, the response is retransmitted periodically even if the transport at the UAS 
is reliable.

If the server retransmits the 2xx response for 64*T1 seconds without receiving an ACK, the dialog is con-
fi rmed, but the session should be terminated. This is accomplished with a BYE.

A.9   Modifying an Existing Session
A successful INVITE request establishes both a dialog between two user agents and a session using the of-
fer-answer model. Section A.7 explains how to modify an existing dialog using a target refresh request (for 
example, changing the remote target URI of the dialog). This section describes how to modify the actual 
session. This modifi cation can involve changing addresses or ports, adding a media stream, deleting a media 
stream, and so on. This is accomplished by sending a new INVITE request within the same dialog that estab-
lished the session. An INVITE request sent within an existing dialog is known as a re-INVITE.

Note that a single re-INVITE can modify the dialog and the parameters of the session at the same time. Either 
the caller or callee can modify an existing session. The behavior of a UA on detection of media failure is a matter 
of local policy. However, automated generation of re-INVITE or BYE is not recommended to avoid fl ooding the 
network with traffi c when there is congestion. In any case, if these messages are sent automatically, they should 
be sent after some randomized interval. Note that the paragraph above refers to automatically generated BYEs 
and re-INVITEs. If the user hangs up upon media failure, the UA would send a BYE request as usual.

A.9.1   UAC Behavior
The same offer-answer model that applies to session descriptions in INVITEs applies to re-INVITEs. As 
a result, a UAC that wants to add a media stream, for example, will create a new offer that contains this 
media stream, and send that in an INVITE request to its peer. It is important to note that the full description 
of the session, not just the change, is sent. This supports stateless session processing in various elements, 
and supports failover and recovery capabilities. Of course, a UAC may send a re-INVITE with no session 
description, in which case the fi rst reliable nonfailure response to the re-INVITE will contain the offer (in 
this specifi cation, that is a 2xx response).

If the session description format has the capability for version numbers, the offerer should indicate that the 
version of the session description has changed.

The To, From, Call-ID, CSeq, and Request-URI of a re-INVITE are set following the same rules as for regu-
lar requests within an existing dialog, described in Section A.7.

A UAC may choose not to add an Alert-Info header fi eld or a body with Content-Disposition “alert” to re-IN-
VITEs because UASs do not typically alert the user upon reception of a re-INVITE. Unlike an INVITE, which 
can fork, a re-INVITE will never fork, and therefore, only ever generate a single fi nal response. The reason a 
re-INVITE will never fork is that the Request-URI identifi es the target as the UA instance it established the 
dialog with, rather than identifying an address-of-record for the user. Note that a UAC must not initiate a new 
INVITE transaction within a dialog while another INVITE transaction is in progress in either direction.

1.  If there is an ongoing INVITE client transaction, the TU must wait until the transaction reaches the 
completed or terminated state before initiating the new INVITE.

2.  If there is an ongoing INVITE server transaction, the TU must wait until the transaction reaches the 
confi rmed or terminated state before initiating the new INVITE.

However, a UA may initiate a regular transaction while an INVITE transaction is in progress. A UA may 
also initiate an INVITE transaction while a regular transaction is in progress.

Minoli_Book.indb   152Minoli_Book.indb   152 3/9/2006   6:30:21 PM3/9/2006   6:30:21 PM



Basic VoIP Signaling and SIP Concepts

153

If a UA receives a non-2xx fi nal response to a re-INVITE, the session parameters must remain unchanged, as 
if no re-INVITE had been issued. Note that, as stated in Section A.7.2.1, if the non-2xx fi nal response is a 481 
(Call/Transaction Does Not Exist), or a 408 (Request Timeout), or no response at all is received for the re-IN-
VITE (that is, a timeout is returned by the INVITE client transaction), the UAC will terminate the dialog.

If a UAC receives a 491 response to a re-INVITE, it should start a timer with a value T chosen as follows:

1.  If the UAC is the owner of the Call-ID of the dialog ID (meaning it generated the value), T has a 
randomly chosen value between 2.1 and 4 seconds in units of 10 ms.

2.  If the UAC is not the owner of the Call-ID of the dialog ID, T has a randomly chosen value of 
between 0 and 2 seconds in units of 10 ms.

When the timer fi res, the UAC should attempt the re-INVITE once more, if it still desires for that session 
modifi cation to take place. For example, if the call was already hung up with a BYE, the re-INVITE would 
not take place. The rules for transmitting a re-INVITE and for generating an ACK for a 2xx response to re-
INVITE are the same as for the initial INVITE.

A.9.2   UAS Behavior
Section A.8.3.1 describes the procedure for distinguishing incoming re-INVITEs from incoming initial IN-
VITEs and handling a re-INVITE for an existing dialog.

A UAS that receives a second INVITE before it sends the fi nal response to a fi rst INVITE with a lower CSeq 
sequence number on the same dialog must return a 500 (Server Internal Error) response to the second INVITE 
and must include a Retry-After header fi eld with a randomly chosen value of between 0 and 10 seconds.

A UAS that receives an INVITE on a dialog while an INVITE it had sent on that dialog is in progress 
must return a 491 (Request Pending) response to the received INVITE. If a UA receives a re-INVITE for 
an existing dialog, it must check any version identifi ers in the session description or, if there are no ver-
sion identifi ers, the content of the session description to see if it has changed. If the session description has 
changed, the UAS must adjust the session parameters accordingly, possibly after asking the user for confi r-
mation. Versioning of the session description can be used to accommodate the capabilities of new arrivals 
to a conference, add or delete media, or change from a unicast to a multicast conference. If the new session 
description is not acceptable, the UAS can reject it by returning a 488 (Not Acceptable Here) response for 
the re-INVITE. This response should include a Warning header fi eld.

If a UAS generates a 2xx response and never receives an ACK, it should generate a BYE to terminate the dialog.

A UAS may choose not to generate 180 (Ringing) responses for a re-INVITE because UACs do not typically 
render this information to the user. For the same reason, UASs may choose not to use an Alert-Info header 
fi eld or a body with Content-Disposition “alert” in responses to a re-INVITE.

A UAS providing an offer in a 2xx (because the INVITE did not contain an offer) should construct the offer as 
if the UAS were making a brand new call, subject to the constraints of sending an offer that updates an existing 
session. Specifi cally, this means that it should include as many media formats and media types that the UA is 
willing to support. The UAS must ensure that the session description overlaps with its previous session descrip-
tion in media formats, transports, or other parameters that require support from the peer. This is to avoid the 
need for the peer to reject the session description. If, however, it is unacceptable to the UAC, the UAC should 
generate an answer with a valid session description, and then send a BYE to terminate the session.

A.10   Terminating a Session
This section describes the procedures for terminating a session established by SIP. The state of the ses-
sion and the state of the dialog are very closely related. When a session is initiated with an INVITE, each 
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1xx or 2xx response from a distinct UAS creates a dialog, and if that response completes the offer/answer 
exchange, it also creates a session. As a result, each session is “associated” with a single dialog—the one 
which resulted in its creation. If an initial INVITE generates a non-2xx fi nal response, that terminates all 
sessions (if any) and all dialogs (if any) that were created through responses to the request. By virtue of 
completing the transaction, a non-2xx fi nal response also prevents further sessions from being created as 
a result of the INVITE. The BYE request is used to terminate a specifi c session or attempted session. In 
this case, the specifi c session is the one with the peer UA on the other side of the dialog. When a BYE is 
received on a dialog, any session associated with that dialog should terminate. A UA must not send a BYE 
outside of a dialog. The caller’s UA may send a BYE for either confi rmed or early dialogs, and the callee’s 
UA may send a BYE on confi rmed dialogs, but must not send a BYE on early dialogs.

However, the callee’s UA must not send a BYE on a confi rmed dialog until it has received an ACK for its 
2xx response or until the server transaction times out. If no SIP extensions have defi ned other application 
layer states associated with the dialog, the BYE also terminates the dialog.

The impact of a non-2xx fi nal response to INVITE on dialogs and sessions makes the use of CANCEL at-
tractive. The CANCEL attempts to force a non-2xx response to the INVITE (in particular, a 487). Therefore, 
if a UAC wishes to give up on its call attempt entirely, it can send a CANCEL. If the INVITE results in 2xx 
fi nal response(s) to the INVITE, this means that a UAS accepted the invitation while the CANCEL was in 
progress. The UAC may continue with the sessions established by any 2xx responses or may terminate them 
with BYE.

The notion of “hanging up” is not well-defi ned within SIP. It is specifi c to a particular, albeit common, 
user interface. Typically, when the user hangs up, it indicates a desire to terminate the attempt to establish 
a session, and to terminate any sessions already created. For the caller’s UA, this would imply a CANCEL 
request if the initial INVITE has not generated a fi nal response, and a BYE to all confi rmed dialogs after a 
fi nal response. For the callee’s UA, it would typically imply a BYE; presumably, when the user picked up 
the phone, a 2xx was generated, and so hanging up would result in a BYE after the ACK is received. This 
does not mean a user cannot hang up before receipt of the ACK, it just means that the software in his phone 
needs to maintain state for a short while in order to clean up properly. If the particular UI allows for the user 
to reject a call before it’s answered, a 403 (Forbidden) is a good way to express that. As per the rules above, 
a BYE cannot be sent.

A.10.1   Terminating a Session with a BYE Request

A.10.1.1 UAC Behavior
A BYE request is constructed as would any other request within a dialog, as described in Section A.7.

Once the BYE is constructed, the UAC core creates a new non-INVITE client transaction and passes it the 
BYE request. The UAC must consider the session terminated (and therefore stop sending or listening for 
media) as soon as the BYE request is passed to the client transaction. If the response for the BYE is a 481 
(Call/Transaction Does Not Exist) or a 408 (Request Timeout) or no response at all is received for the BYE 
(that is, a timeout is returned by the client transaction), the UAC must consider the session and the dialog 
terminated.

A.10.1.2  UAS Behavior
A UAS fi rst processes the BYE request according to the general UAS processing described in Section A.3.2. 
A UAS core receiving a BYE request checks if it matches an existing dialog. If the BYE does not match an 
existing dialog, the UAS core should generate a 481 (Call/Transaction Does Not Exist) response and pass 
that to the server transaction.
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This rule means that a BYE sent without tags by a UAC will be rejected. This is a change from RFC 2543, 
which allowed BYE without tags. A UAS core receiving a BYE request for an existing dialog must follow 
the procedures of Section A.7.2.2 to process the request. Once done, the UAS should terminate the session 
(and therefore stop sending and listening for media). The only case where it can elect not to are multicast 
sessions, where participation is possible even if the other participant in the dialog has terminated its involve-
ment in the session. Whether or not it ends its participation on the session, the UAS core must generate a 
2xx response to the BYE, and must pass that to the server transaction for transmission.

The UAS must still respond to any pending requests received for that dialog. It is recommended that a 487 
(Request Terminated) response be generated to those pending requests.

A.11   Proxy Behavior

A.11.1  Overview
SIP proxies are elements that route SIP requests to user agent servers and SIP responses to user agent 
clients. A request may traverse several proxies on its way to a UAS. Each will make routing decisions, 
modifying the request before forwarding it to the next element. Responses will route through the same set of 
proxies traversed by the request in the reverse order.

Being a proxy is a logical role for a SIP element. When a request arrives, an element that can play the role 
of a proxy fi rst decides if it needs to respond to the request on its own. For instance, the request may be 
malformed or the element may need credentials from the client before acting as a proxy. The element may 
respond with any appropriate error code. When responding directly to a request, the element is playing the 
role of a UAS and must behave as described in Section A.3.2.

A proxy can operate in either a stateful or stateless mode for each new request. When stateless, a proxy acts as 
a simple forwarding element. It forwards each request downstream to a single element determined by making 
a targeting and routing decision based on the request. It simply forwards every response it receives upstream. 
A stateless proxy discards information about a message once the message has been forwarded. A stateful 
proxy remembers information (specifi cally, transaction state) about each incoming request and any requests it 
sends as a result of processing the incoming request. It uses this information to affect the processing of future 
messages associated with that request. A stateful proxy may choose to “fork” a request, routing it to multiple 
destinations. Any request that is forwarded to more than one location must be handled statefully.

In some circumstances, a proxy may forward requests using stateful transports (such as TCP) without being 
transaction-stateful. For instance, a proxy may forward a request from one TCP connection to another trans-
action statelessly as long as it places enough information in the message to be able to forward the response 
down the same connection the request arrived on. Requests forwarded between different types of transports 
where the proxy’s TU must take an active role in ensuring reliable delivery on one of the transports must be 
forwarded transaction statefully.

A stateful proxy may transition to stateless operation at any time during the processing of a request, so long 
as it did not do anything that would otherwise prevent it from being stateless initially (forking, for example, 
or generation of a 100 response). When performing such a transition, all state is simply discarded. The proxy 
should not initiate a CANCEL request.

Much of the processing involved when acting statelessly or statefully for a request is identical. The next sev-
eral subsections are written from the point of view of a stateful proxy. The last section calls out those places 
where a stateless proxy behaves differently.

Minoli_Book.indb   155Minoli_Book.indb   155 3/9/2006   6:30:21 PM3/9/2006   6:30:21 PM



Chapter 3

156

A.11.2   Stateful Proxy
When stateful, a proxy is purely a SIP transaction processing engine. A stateful proxy has a server transac-
tion associated with one or more client transactions by a higher layer proxy processing component (see 
Figure 3.3), known as a proxy core. An incoming request is processed by a server transaction. Requests from 
the server transaction are passed to a proxy core. The proxy core determines where to route the request, 
choosing one or more next-hop locations. An outgoing request for each next-hop location is processed by its 
own associated client transaction. The proxy core collects the responses from the client transactions and uses 
them to send responses to the server transaction.

A stateful proxy creates a new server transaction for each new request received. Any retransmissions of the 
request will then be handled by that server transaction per Section A.12. The proxy core must behave as a 
UAS with respect to sending an immediate provisional on that server transaction (such as 100 Trying) as 
described in Section A.3.2.6. Thus, a stateful proxy should not generate 100 (Trying) responses to non-IN-
VITE requests.

This is a model of proxy behavior, not of software. An implementation is free to take any approach that 
replicates the external behavior this model defi nes.

For all new requests, including any with unknown methods, an element intending to proxy the request must:

1.  Validate the request;
2.  Preprocess routing information;
3.  Determine target(s) for the request;
4.  Forward the request to each target;
5.  Process all responses.

Proxy 
“Higher” Layer 

C 
T 

C 
T 

S 
T 

C 
T 

CT = Client Transaction 

ST = Server Transaction 

Figure 3.3: Stateful proxy model.

See RFC 3261 for details.

A.11.3  Summary of  Proxy Route Processing
In the absence of local policy to the contrary, the processing a proxy performs on a request containing a 
Route header fi eld can be summarized in the following steps.

The proxy will inspect the Request-URI. If it indicates a resource owned by this proxy, the proxy 
will replace it with the results of running a location service. Otherwise, the proxy will not change 
the Request-URI.

1.
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The proxy will inspect the URI in the topmost Route header fi eld value. If it indicates this proxy, 
the proxy removes it from the Route header fi eld (this route node has been reached).
The proxy will forward the request to the resource indicated by the URI in the topmost Route 
header fi eld value or in the Request-URI if no Route header fi eld is present. The proxy determines 
the address, port and transport to use when forwarding the request.

If no strict-routing elements are encountered on the path of the request, the Request-URI will always indi-
cate the target of the request.

A.11.3.1 Examples

Basic  SIP Trapezoid
This scenario is the basic SIP trapezoid, U1 → P1 → P2 → U2, with both proxies record-routing. Here is 
the fl ow.

U1 sends:

   INVITE sip:callee@domain.com SIP/2.0
   Contact: sip:caller@u1.example.com

to P1. P1 is an outbound proxy. P1 is not responsible for domain.com, so it looks it up in DNS and sends it 
there. It also adds a Record-Route header fi eld value:

   INVITE sip:callee@domain.com SIP/2.0
   Contact: sip:caller@u1.example.com
   Record-Route: <sip:p1.example.com;lr>

P2 gets this. It is responsible for domain.com so it runs a location service and rewrites the Request-URI. It 
also adds a Record-Route header fi eld value. There is no Route header fi eld, so it resolves the new Request-
URI to determine where to send the request:

   INVITE sip:callee@u2.domain.com SIP/2.0
   Contact: sip:caller@u1.example.com
   Record-Route: <sip:p2.domain.com;lr>
   Record-Route: <sip:p1.example.com;lr>

The callee at u2.domain.com gets this and responds with a 200 OK:

   SIP/2.0 200 OK
   Contact: sip:callee@u2.domain.com
   Record-Route: <sip:p2.domain.com;lr>
   Record-Route: <sip:p1.example.com;lr>

The callee at u2 also sets its dialog state’s remote target URI to sip:caller@u1.example.com and its route set to:

   (<sip:p2.domain.com;lr>,<sip:p1.example.com;lr>)

This is forwarded by P2 to P1 to U1 as normal. Now, U1 sets its dialog state’s remote target URI to sip:
callee@u2.domain.com and its route set to:

   (<sip:p1.example.com;lr>,<sip:p2.domain.com;lr>)

2.

3.
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Since all the route set elements contain the lr parameter, U1 constructs the following BYE request:

   BYE sip:callee@u2.domain.com SIP/2.0
   Route: <sip:p1.example.com;lr>,<sip:p2.domain.com;lr>

As any other element (including proxies) would do, it resolves the URI in the topmost Route header fi eld 
value using DNS to determine where to send the request. This goes to P1. P1 notices that it is not responsi-
ble for the resource indicated in the Request-URI so it does not change it. It does see that it is the fi rst value 
in the Route header fi eld, so it removes that value, and forwards the request to P2:

   BYE sip:callee@u2.domain.com SIP/2.0
   Route: <sip:p2.domain.com;lr>

P2 also notices it is not responsible for the resource indicated by the Request-URI (it is responsible for domain.
com, not u2.domain.com), so it does not change it. It does see itself in the fi rst Route header fi eld value, so it 
removes it and forwards the following to u2.domain.com based on a DNS lookup against the Request-URI:

   BYE sip:callee@u2.domain.com SIP/2.0

 Traversing a Strict-Routing Proxy
In this scenario, a dialog is established across four proxies, each of which adds Record-Route header fi eld values. 
The third proxy implements the strict-routing procedures specifi ed in RFC 2543 and many works in progress.

 U1→P1→P2→P3→P4→U2

The INVITE arriving at U2 contains:

   INVITE sip:callee@u2.domain.com SIP/2.0
   Contact: sip:caller@u1.example.com
   Record-Route: <sip:p4.domain.com;lr>
   Record-Route: <sip:p3.middle.com>
   Record-Route: <sip:p2.example.com;lr>
   Record-Route: <sip:p1.example.com;lr>

to which U2 responds to with a 200 OK. Later, U2 sends the following BYE request to P4 based on the fi rst 
Route header fi eld value.

   BYE sip:caller@u1.example.com SIP/2.0
   Route: <sip:p4.domain.com;lr>
   Route: <sip:p3.middle.com>
   Route: <sip:p2.example.com;lr>
   Route: <sip:p1.example.com;lr>

P4 is not responsible for the resource indicated in the Request-URI so it will leave it alone. It notices that it 
is the element in the fi rst Route header fi eld value so it removes it. It then prepares to send the request based 
on the now fi rst Route header fi eld value of sip:p3.middle.com, but it notices that this URI does not contain 
the lr parameter, so, before sending, it reformats the request to be:

   BYE sip:p3.middle.com SIP/2.0
   Route: <sip:p2.example.com;lr>
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   Route: <sip:p1.example.com;lr>
   Route: <sip:caller@u1.example.com>

P3 is a strict router, so it forwards the following to P2:

   BYE sip:p2.example.com;lr SIP/2.0
   Route: <sip:p1.example.com;lr>
   Route: <sip:caller@u1.example.com>

P2 sees the request-URI is a value it placed into a Record-Route header fi eld, so, before further processing, 
it rewrites the request to be:

   BYE sip:caller@u1.example.com SIP/2.0
   Route: <sip:p1.example.com;lr>

P2 is not responsible for u1.example.com, so it sends the request to P1 based on the resolution of the Route 
header fi eld value.

P1 notices itself in the topmost Route header fi eld value, so it removes it, resulting in:

   BYE sip:caller@u1.example.com SIP/2.0

Since P1 is not responsible for u1.example.com and there is no Route header fi eld, P1 will forward the 
request to u1.example.com based on the Request-URI.

 Rewriting Record-Route Header Field Values
In this scenario, U1 and U2 are in different private namespaces and they enter a dialog through a proxy P1, 
which acts as a gateway between the namespaces.

 U1→P1→U2

U1 sends:

   INVITE sip:callee@gateway.leftprivatespace.com SIP/2.0
   Contact: <sip:caller@u1.leftprivatespace.com>

P1 uses its location service and sends the following to U2:

   INVITE sip:callee@rightprivatespace.com SIP/2.0
   Contact: <sip:caller@u1.leftprivatespace.com>
   Record-Route: <sip:gateway.rightprivatespace.com;lr>

U2 sends this 200 (OK) back to P1:

   SIP/2.0 200 OK
   Contact: <sip:callee@u2.rightprivatespace.com>
   Record-Route: <sip:gateway.rightprivatespace.com;lr>

P1 rewrites its Record-Route header parameter to provide a value that U1 will fi nd useful, and sends the fol-
lowing to U1:

   SIP/2.0 200 OK
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   Contact: <sip:callee@u2.rightprivatespace.com>
   Record-Route: <sip:gateway.leftprivatespace.com;lr>

Later, U1 sends the following BYE request to P1:

   BYE sip:callee@u2.rightprivatespace.com SIP/2.0
   Route: <sip:gateway.leftprivatespace.com;lr>

which P1 forwards to U2 as:

   BYE sip:callee@u2.rightprivatespace.com SIP/2.0

A.12   Transactions
SIP is a transactional protocol: interactions between components take place in a series of independent message 
exchanges. Specifi cally, a SIP transaction consists of a single request and any responses to that request, which 
include zero or more provisional responses and one or more fi nal responses. In the case of a transaction where the 
request was an INVITE (known as an INVITE transaction), the transaction also includes the ACK only if the fi nal 
response was not a 2xx response. If the response was a 2xx, the ACK is not considered part of the transaction.

The reason for this separation is rooted in the importance of delivering all 200 (OK) responses to an INVITE 
to the UAC. To deliver them all to the UAC, the UAS alone takes responsibility for retransmitting them and 
the UAC alone takes responsibility for acknowledging them with ACK. Since this ACK is retransmitted only 
by the UAC, it is effectively considered its own transaction.

Transactions have a client side and a server side. The client side is known as a client transaction and the 
server side as a server transaction. The client transaction sends the request, and the server transaction sends 
the response. The client and server transactions are logical functions that are embedded in any number 
of elements. Specifi cally, they exist within user agents and stateful proxy servers. Consider the example  
presented at the beginning of this chapter. In this example, the UAC executes the client transaction and its 
outbound proxy executes the server transaction. The outbound proxy also executes a client transaction, 
which sends the request to a server transaction in the inbound proxy. That proxy also executes a client trans-
action, which in turn sends the request to a server transaction in the UAS. This is shown in Figure 3.4.
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Figure 3.4: Transaction relationships.
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A stateless proxy does not contain a client or server transaction. The transaction exists between the UA or 
stateful proxy on one side, and the UA or stateful proxy on the other side. As far as SIP transactions are 
concerned, stateless proxies are effectively transparent. The purpose of the client transaction is to receive a 
request from the element in which the client is embedded (call this element the “Transaction User” or TU; it 
can be a UA or a stateful proxy), and reliably deliver the request to a server transaction.

The client transaction is also responsible for receiving responses and delivering them to the TU, fi ltering 
out any response retransmissions or disallowed responses (such as a response to ACK). Additionally, in the 
case of an INVITE request, the client transaction is responsible for generating the ACK request for any fi nal 
response accepting a 2xx response.

Similarly, the purpose of the server transaction is to receive requests from the transport layer and deliver 
them to the TU. The server transaction fi lters any request retransmissions from the network. The server 
transaction accepts responses from the TU and delivers them to the transport layer for transmission over the 
network. In the case of an INVITE transaction, it absorbs the ACK request for any fi nal response excepting a 
2xx response.

The 2xx response and its ACK receive special treatment. This response is retransmitted only by a UAS, and 
its ACK generated only by the UAC. This end-to-end treatment is needed so that a caller knows the entire set 
of users that have accepted the call. Because of this special handling, retransmissions of the 2xx response are 
handled by the UA core, not the transaction layer. Similarly, generation of the ACK for the 2xx is handled by 
the UA core. Each proxy along the path merely forwards each 2xx response to INVITE and its correspond-
ing ACK.

 A.12.1   Client Transaction
The client transaction provides its functionality through the maintenance of a state machine.

The TU communicates with the client transaction through a simple interface. When the TU wishes to initiate 
a new transaction, it creates a client transaction and passes it the SIP request to send and an IP address, port, 
and transport to which to send it. The client transaction begins execution of its state machine. Valid responses 
are passed up to the TU from the client transaction.

There are two types of client transaction state machines, depending on the method of the request passed by 
the TU. One handles client transactions for INVITE requests. This type of machine is referred to as an IN-
VITE client transaction. Another type handles client transactions for all requests except INVITE and ACK. 
This is referred to as a non-INVITE client transaction. There is no client transaction for ACK. If the TU 
wishes to send an ACK, it passes one directly to the transport layer for transmission.

The INVITE transaction is different from those of other methods because of its extended duration. Normally, 
human input is required in order to respond to an INVITE. The long delays expected for sending a response 
argue for a three-way handshake. On the other hand, requests of other methods are expected to complete 
rapidly. Because of the non-INVITE transaction’s reliance on a two-way handshake, TUs should respond 
immediately to non-INVITE requests.

See RFC 3261 for details.

A.12.2    Server Transaction
The server transaction is responsible for the delivery of requests to the TU and the reliable transmission of 
responses. It accomplishes this through a state machine. Server transactions are created by the core when a 
request is received, and transaction handling is desired for that request (this is not always the case). As with 
the client transactions, the state machine depends on whether the received request is an INVITE request.
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See RFC 3261 for details.

A.13    Transport
The transport layer is responsible for the actual transmission of requests and responses over network 
transports. This includes determination of the connection to use for a request or response in the case of con-
nection-oriented transports.

The transport layer is responsible for managing persistent connections for transport protocols like TCP and 
SCTP, or TLS over those, including ones opened to the transport layer. This includes connections opened by the 
client or server transports, so that connections are shared between client and server transport functions. These 
connections are indexed by the tuple formed from the address, port, and transport protocol at the far end of the 
connection. When a connection is opened by the transport layer, this index is set to the destination IP, port, and 
transport. When the connection is accepted by the transport layer, this index is set to the source IP address, port 
number, and transport. Note that, because the source port is often ephemeral, but it cannot be known whether 
it is ephemeral or selected through procedures described in RFC 3261, connections accepted by the transport 
layer will frequently not be reused. The result is that two proxies in a “peering” relationship using a connection-
oriented transport frequently will have two connections in use—one for transactions initiated in each direction.

It is recommended that connections be kept open for some implementation-defi ned duration after the last 
message was sent or received over that connection. This duration should at least equal the longest amount of 
time the element would need in order to bring a transaction from instantiation to the terminated state. This 
is to make it likely that transactions are completed over the same connection on which they are initiated (for 
example, request, response, and, in the case of INVITE, ACK for non-2xx responses). This usually means 
at least 64*T1. However, it could be larger, for example, in an element that has a TU using a large value for 
timer C.

All SIP elements must implement UDP and TCP. SIP elements may implement other protocols. Making 
TCP mandatory for the UA is a substantial change from RFC 2543. It has arisen out of the need to handle 
larger messages, which must use TCP, as discussed below. Thus, even if an element never sends large mes-
sages, it may receive one and needs to be able to handle them.

A.13.1  Clients

A.13.1.1   Sending Requests
The client side of the transport layer is responsible for sending the request and receiving responses. The user 
of the transport layer passes the client transport the request, an IP address, port, transport, and possibly TTL 
for multicast destinations.

If a request is within 200 bytes of the path MTU, or if it is larger than 1300 bytes and the path MTU is un-
known, the request must be sent using an RFC 2914 congestion-controlled transport protocol, such as TCP. 
If this causes a change in the transport protocol from the one indicated in the top Via, the value in the top Via 
must be changed. This prevents fragmentation of messages over UDP and provides congestion control for 
larger messages. However, implementations must be able to handle messages up to the maximum datagram 
packet size. For UDP, this size is 65,535 bytes, including IP and UDP headers.

The 200 byte “buffer” between the message size and the MTU accommodates the fact that the response in 
SIP can be larger than the request. This happens due to the addition of Record-Route header fi eld values to 
the responses to INVITE, for example. With the extra buffer, the response can be about 170 bytes larger than 
the request, and still not be fragmented on IPv4 (about 30 bytes is consumed by IP/UDP, assuming no IPSec). 
1300 is chosen when path MTU is not known, based on the assumption of a 1500 byte Ethernet MTU.
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 If an element sends a request over TCP because of these message size constraints, and that request would 
have otherwise been sent over UDP, if the attempt to establish the connection generates either an ICMP Pro-
tocol Not Supported, or results in a TCP reset, the element should retry the request, using UDP. This is only 
to provide backwards compatibility with RFC 2543 compliant implementations that do not support TCP. It is 
anticipated that this behavior will be deprecated in a future revision of this specifi cation.

A client that sends a request to a multicast address must add the “maddr” parameter to its Via header fi eld 
value containing the destination multicast address, and for IPv4, should add the “ttl” parameter with a value 
of 1. Usage of IPv6 multicast is not defi ned in this specifi cation, and will be a subject of future standardiza-
tion when the need arises.

These rules result in a purposeful limitation of multicast in SIP. Its primary function is to provide a “single-
hop-discovery-like” service, delivering a request to a group of homogeneous servers, where it is only 
required to process the response from any one of them. This functionality is most useful for registrations. 
In fact, based on the transaction processing rules in RFC 3261, the client transaction will accept the fi rst 
response, and view any others as retransmissions because they all contain the same Via branch identifi er.

Before a request is sent, the client transport must insert a value of the “sent-by” fi eld into the Via header 
fi eld. This fi eld contains an IP address or host name, and port. The usage of an FQDN is recommended. This 
fi eld is used for sending responses under certain conditions, described below. If the port is absent, the default 
value depends on the transport. It is 5060 for UDP, TCP and SCTP, 5061 for TLS.

For reliable transports, the response is normally sent on the connection on which the request was received. 
Therefore, the client transport must be prepared to receive the response on the same connection used to send 
the request. Under error conditions, the server may attempt to open a new connection to send the response. 
To handle this case, the transport layer must also be prepared to receive an incoming connection on the 
source IP address from which the request was sent and port number in the “sent-by” fi eld. It also must be 
prepared to receive incoming connections on any address and port that would be selected by a server based 
on the procedures described in RFC 3261.

For unreliable unicast transports, the client transport must be prepared to receive responses on the source IP 
address from which the request is sent (as responses are sent back to the source address) and the port number 
in the “sent-by” fi eld. Furthermore, as with reliable transports, in certain cases the response will be sent 
elsewhere. The client must be prepared to receive responses on any address and port that would be selected 
by a server based on the procedures described in RFC 3261.

For multicast, the client transport must be prepared to receive responses on the same multicast group and port 
to which the request is sent (that is, it needs to be a member of the multicast group it sent the request to.)

If a request is destined for an IP address, port, and transport to which an existing connection is open, it is 
recommended that this connection be used to send the request, but another connection may be opened and 
used. If a request is sent using multicast, it is sent to the group address, port, and TTL provided by the trans-
port user. If a request is sent using unicast unreliable transports, it is sent to the IP address and port provided 
by the transport user.

A.13.1.2   Receiving Responses
When a response is received, the client transport examines the top Via header fi eld value. If the value of 
the “sent-by” parameter in that header fi eld value does not correspond to a value that the client transport is 
confi gured to insert into requests, the response must be silently discarded.

If there are any client transactions in existence, the client transport uses the matching procedures of Section 
A.12.1.3 to attempt to match the response to an existing transaction. If there is a match, the response must be 
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passed to that transaction. Otherwise, the response must be passed to the core (whether it be stateless proxy, 
stateful proxy, or UA) for further processing. Handling of these “stray” responses is dependent on the core (a 
proxy will forward them, while a UA will discard, for example).

A.13.2  Servers

A.13.2.1   Receiving Requests
A server should be prepared to receive requests on any IP address, port, and transport combination that can 
be the result of a DNS lookup on a SIP or SIPS URI that is handed out for the purposes of communicating 
with that server. In this context, “handing out” includes placing a URI in a Contact header fi eld in a REG-
ISTER request or a redirect response, or in a Record-Route header fi eld in a request or response. A URI 
can also be “handed out” by placing it on a web page or business card. It is also recommended that a server 
listen for requests on the default SIP ports (5060 for TCP and UDP, 5061 for TLS over TCP) on all public 
interfaces. The typical exception would be private networks, or when multiple server instances are running 
on the same host. For any port and interface that a server listens on for UDP, it must listen on that same port 
and interface for TCP. This is because a message may need to be sent using TCP, rather than UDP, if it is 
too large. As a result, the converse is not true. A server need not listen for UDP on a particular address and 
port just because it is listening on that same address and port for TCP. There may, of course, be other reasons 
why a server needs to listen for UDP on a particular address and port.

When the server transport receives a request over any transport, it must examine the value of the “sent-by” 
parameter in the top Via header fi eld value. If the host portion of the “sent-by” parameter contains a domain 
name, or if it contains an IP address that differs from the packet source address, the server must add a “re-
ceived” parameter to that Via header fi eld value. This parameter must contain the source address from which 
the packet was received. This is to assist the server transport layer in sending the response, since it must be 
sent to the source IP address from which the request came.

Consider a request received by the server transport which looks like, in part:

  INVITE sip:bob@Biloxi.com SIP/2.0  Via: SIP/2.0/UDP bobspc.biloxi.com:5060

The request is received with a source IP address of 192.0.2.4. Before passing the request up, the transport 
adds a “received” parameter, so that the request would look like, in part:

  INVITE sip:bob@Biloxi.com SIP/2.0  Via: SIP/2.0/UDP bobspc.biloxi.com:5060;
  received=192.0.2.4

 Next, the server transport attempts to match the request to a server transaction. It does so using the match-
ing rules described in Section A.12.2.3. If a matching server transaction is found, the request is passed to 
that transaction for processing. If no match is found, the request is passed to the core, which may decide to 
construct a new server transaction for that request. Note that when a UAS core sends a 2xx response to IN-
VITE, the server transaction is destroyed. This means that when the ACK arrives, there will be no matching 
server transaction, and based on this rule, the ACK is passed to the UAS core, where it is processed.

A.13.2.2   Sending Responses
The server transport uses the value of the top Via header fi eld in order to determine where to send a response. 
It must follow the following process:

If the “sent-protocol” is a reliable transport protocol such as TCP or SCTP, or TLS over those, the 
response must be sent using the existing connection to the source of the original request that created 

•
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the transaction, provided that connection is still open. This requires the server transport to maintain 
an association between server transactions and transport connections. If that connection is no longer 
open, the server should open a connection to the IP address in the “received” parameter, if present, 
using the port in the “sent-by” value, or the default port for that transport, if no port is specifi ed. 
If that connection attempt fails, the server should use the procedures in [4] for servers in order to 
determine the IP address and port to open the connection and send the response to.
Otherwise, if the Via header fi eld value contains a “maddr” parameter, the response must be 
forwarded to the address listed there, using the port indicated in “sent-by,” or port 5060 if none is 
present. If the address is a multicast address, the response should be sent using the TTL indicated in 
the “ttl” parameter, or with a TTL of 1 if that parameter is not present.
Otherwise (for unreliable unicast transports), if the top Via has a “received” parameter, the response 
must be sent to the address in the “received” parameter, using the port indicated in the “sent-by” 
value, or using port 5060 if none is specifi ed explicitly. If this fails—for example, elicits an ICMP 
“port unreachable” response—the procedures described in RFC 3261 should be used to determine 
where to send the response.
Otherwise, if it is not receiver-tagged, the response must be sent to the address indicated by the 
“sent-by” value using the procedures described in RFC 3261.

A.13.3   Framing
In the case of message-oriented transports (such as UDP), if the message has a Content-Length header fi eld, 
the message body is assumed to contain that many bytes. If there are additional bytes in the transport packet 
beyond the end of the body, they must be discarded. When the transport packet ends before the end of the 
message body, this is considered an error. If the message is a response, it must be discarded. If the message 
is a request, the element should generate a 400 (Bad Request) response. When the message has no Content-
Length header fi eld, the message body is assumed to end at the end of the transport packet. In the case of 
stream-oriented transports such as TCP, the Content-Length header fi eld indicates the size of the body. The 
Content-Length header fi eld must be used with stream oriented transports.

A.13.4   Error Handling
Error handling is independent of whether the message was a request or response. If the transport user asks 
for a message to be sent over an unreliable transport, and the result is an ICMP error, the behavior depends 
on the type of ICMP error. Host, network, port or protocol unreachable errors, or parameter problem errors 
should cause the transport layer to inform the transport user of a failure in sending. Source quench and TTL 
exceeded ICMP errors should be ignored. If the transport user asks for a request to be sent over a reliable 
transport, and the result is a connection failure, the transport layer should inform the transport user of a 
failure in sending.

A.14  Additional Details
Refer to RFC 3261 for a multitude of additional details.

 

•

•

•
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C H A P T E R  4
Basic “Presence” Concepts

4.1 Introduction
This chapter describes, in a general manner, presence concepts and services. Presence and Instant Messag-
ing have recently emerged as a new medium of communications over enterprise networks, extranets, and the 
Internet.  Presence is a means for fi nding, retrieving, and subscribing to changes in the presence information 
(e.g., “online” or “offl ine”) of other users, typically in the context of messaging (e-mail), Unifi ed Messaging, 
and/or VoIP. It can be defi ned as the willingness and ability of a user to communicate with other users on the 
network [ROS200401]. 

Historically, presence has been limited to “on-line” and “off-line” indicators. Instant messaging is a means 
for sending small, simple messages that are delivered immediately to online users [AGG200001]. The notion of 
presence is now taking on a broader defi nition/role. VoIP can be used in support of, or in conjunction with, 
presence: it is expected that the sophisticated voice environments made possible by VoIP, including  Unifi ed 
Messaging, will make have use of presence capabilities for one-to-one conversations, roaming applications, and 
voice/video-conferencing. Specifi cally, the anticipation is that presence concepts and services will play a key 
role in 3G VoIP networks based on IPv6 as described in this text; hence, the coverage we allocate to this topic. 

While the protocol linkage between presence and IPv6 is a pragmatic one at this juncture, what makes 
the two have a symbiotic affi nity is that converged VoIP, multimedia (music, video, radio, TV streaming), 
Ubiquitous Computing, and presence are expected to be key services of the near-term future (next 3–6 years) 
that will be delivered over IPv6 networks (services based on IPv4 are already available but the scalability 
and end-to-end robustness and connection reliability are impacted by the current infrastructure). Presence, 
particularly as supported by SIP, is described in a series of IETF RFCs, as follows in Table 4.1:

Table 4.1: Series of IETF RFCs on “Presence.”

RFC 3953 Telephone Number Mapping (ENUM) Service Registration for Presence Services, J. Peterson (January 2005)

RFC 3923 End-to-End Signing and Object Encryption for the Extensible Messaging and Presence Protocol (XMPP), P. 
Saint-Andre (October 2004)

RFC 3922 Mapping the Extensible Messaging and Presence Protocol (XMPP) to Common Presence and Instant Messaging 
(CPIM), P. Saint-Andre (October 2004)

RFC 3921 Extensible Messaging and Presence Protocol (XMPP): Instant Messaging and Presence, P. Saint-Andre, Ed. 
(October 2004)

RFC 3920 Extensible Messaging and Presence Protocol (XMPP): Core, P. Saint-Andre, Ed. (October 2004) 

RFC 3863 Presence Information Data Format (PIDF), H. Sugano, S. Fujimoto, G. Klyne, A. Bateman, W. Carr, J. Peterson 
(August 2004)

RFC 3862 Common Presence and Instant Messaging (CPIM): Message Format, G. Klyne, D. Atkins (August 2004)
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RFC 3861 Address Resolution for Instant Messaging and Presence. J. Peterson (August 2004)

RFC 3860 Common Profi le for Instant Messaging (CPIM), J. Peterson (August 2004)

RFC 3859 Common Profi le for Presence (CPP), J. Peterson (August 2004)

RFC 3856 A Presence Event Package for the Session Initiation Protocol (SIP), J. Rosenberg (August 2004)

RFC 3343 The Application Exchange (APEX) Presence Service, M. Rose, G. Klyne, D. Crocker (April 2003)

RFC 2779 Instant Messaging / Presence Protocol Requirements, M. Day, S. Aggarwal, G. Mohr, J. Vincent (February 2000)

RFC 2778 A Model for Presence and Instant Messaging, M. Day, J. Rosenberg, H. Sugano (February 2000)

The treatment of this topic in this chapter is based on IETF RFC 2778, RFC 2779, and RFC 3856 
[ROS200001], [ROS200401], [AGG200001]. This discussion is strictly for pedagogical purposes. All normative and/
or development work should make direct and explicit reference to the latest IETF/RFC documentation. 

4.2  Abstract Model for a Presence and Instant Messaging
To begin with there is a need for an abstract model for a presence and instant messaging system. This section 
defi nes such a model. The section defi nes the various entities involved, defi nes terminology, and outlines the 
services provided by the system. The goal is to arrive at a common vocabulary for work on requirements for 
protocols and markup for presence and instant messaging; the purpose of the model is to provide a common 
baseline for defi ning and implementing interoperable presence and instant messaging protocols. This treat-
ment is based on IETF RFC 2778 [ROS200001]. 

4.2.1 Introduction
A presence and instant messaging system allows users to subscribe to each other and be notifi ed of changes 
in state, and for users to send each other short instant messages. To facilitate the development of a suite of 
protocols providing this service, it is valuable to fi rst develop a model for the system. The model consists of 
the various partaking entities, descriptions of the basic functions they provide, and defi nition of nomencla-
ture that can be used to facilitate discussion. 

The purpose of this model is to be descriptive and universal: one wants the model to map reasonably onto all 
of the systems that are informally described as presence or instant messaging systems. The mode, however, 
is not intended to be prescriptive or achieve interoperability: an element that appears in the model will not 
necessarily be an element of an interoperable protocol. 

In RFC 2778, each element of the model appears in upper case (e.g.,  PRESENCE SERVICE). (no term in 
lower case or mixed case is intended to be a term of the model.)  The fi rst part of RFC 2278 is intended as an 
overview of the model; terms are presented in an order intended to help the reader understand the relation-
ship between elements. The second part of the RFC is the actual defi nition of the model, with terms defi ned 
for ease of reference. The overview is intended to be helpful but is not defi nitive. 

4.2.2 Overview
The model is intended to provide a means for understanding, comparing, and describing systems that support 
the services typically referred to as presence and instant messaging. It consists of a number of named entities 
that appear, in some form, in existing systems. No actual implementation is likely to have every entity of the 
model as a distinct part. Instead, there will almost always be parts of the implementation that embody two or 
more entities of the model. However, different implementations may combine entities in different ways.
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The model defi nes two services: a PRESENCE SERVICE and an INSTANT MESSAGE SERVICE. The 
PRESENCE SERVICE serves to accept information, store it, and distribute it. The information stored is 
(unsurprisingly) PRESENCE INFORMATION. The INSTANT MESSAGE SERVICE serves to accept and 
deliver INSTANT MESSAGES to INSTANT INBOXES.

4.2.2.1   PRESENCE SERVICE
The PRESENCE SERVICE (see Figure 4.1) has two distinct sets of “clients” (remember, these may be com-
bined in an implementation, but treated separately in the model). One set of clients, called PRESENTITIES, 
provides PRESENCE INFORMATION to be stored and distributed. The other set of clients, called WATCH-
ERS, receives PRESENCE INFORMATION from the service.

Watcher 

Presence Service 

Presentity 

Figure 4.1: Overview of PRESENCE SERVICE.

There are two kinds of  WATCHERS, called  FETCHERS and  SUBSCRIBERS (see Figure 4.2). A FETCHER 
simply requests the current value of some PRESENTITY’s PRESENCE INFORMATION from the PRES-
ENCE SERVICE. In contrast, a SUBSCRIBER requests notifi cation from the PRESENCE SERVICE of 
(future) changes in some PRESENTITY’s PRESENCE INFORMATION. A special kind of FETCHER is 
one that fetches information on a regular basis; this is called a POLLER.

Watcher 

Subscriber 

Poller 

Fetcher 

Figure 4.2:  Varieties of WATCHER.

The PRESENCE SERVICE also has WATCHER INFORMATION about WATCHERS and their activities 
in terms of fetching or subscribing to PRESENCE INFORMATION. The PRESENCE SERVICE may also 
distribute WATCHER INFORMATION to some WATCHERS using the same mechanisms that are available 
for distributing PRESENCE INFORMATION.

Changes to PRESENCE INFORMATION are distributed to SUBSCRIBERS via NOTIFICATIONS. Figures 
4.3a through 4.3c show the fl ow of information as a piece of PRESENCE INFORMATION is changed from 
P1 to P2.
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P1 
Subscriber 

Presence Service 
P1 

P1    P2 
Presentity 

P1 
Subscriber 

Presence Service 
P1    P2 

P2 
Presentity 

P1    P2 
Subscriber 

Presence Service 
P2 

P2 
Presentity 

P2 

P2 

(Top) 

(Middle) 

(Bottom) 

Figure 4.3:  NOTIFICATION. 
(Step 1: Top) (Step 2: Middle) (Step 3: Bottom)

4.2.2.2  INSTANT MESSAGE SERVICE
The INSTANT MESSAGE SERVICE (see Figure 4.4) also has two distinct sets of “clients”: SENDERS 
and INSTANT INBOXES. A SENDER provides INSTANT MESSAGES to the INSTANT MESSAGE 
SERVICE for delivery. Each INSTANT MESSAGE is addressed to a particular INSTANT INBOX 
ADDRESS, and the INSTANT MESSAGE SERVICE attempts to deliver the message to a corresponding 
INSTANT INBOX.

Instant Inbox 

Instant Message Service 

Sender 

Figure 4.4: Overview of  INSTANT MESSAGE SERVICE.
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4.2.2.3 Protocols
A  PRESENCE PROTOCOL defi nes the interaction between PRESENCE SERVICE, PRESENTITIES, and 
WATCHERS. PRESENCE INFORMATION is carried by the PRESENCE PROTOCOL.

An INSTANT MESSAGE PROTOCOL defi nes the interaction between INSTANT MESSAGE SERVICE, 
SENDERS, and INSTANT INBOXES. INSTANT MESSAGES are carried by the INSTANT MESSAGE 
PROTOCOL.

In terms of this model, there is a desire to develop detailed requirements and specifi cations for the structure 
and formats of the PRESENCE PROTOCOL,  PRESENCE INFORMATION, INSTANT MESSAGE PRO-
TOCOL, and INSTANT MESSAGES.

Other Markup 

Communication Address 

Communication Address 

Status 

Status 

Other Markup 

Presence Tuple 

Presence Tuple 

Presence Tuple 

Presence Information 

Contact Address 

Contact Means 

Contact Address 

Contact Means 

Figure 4.5: The structure of PRESENCE INFORMATION.
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4.2.2.4 Formats
The model defi nes the PRESENCE INFORMATION (also see Figure 4.5) to consist of an arbitrary number 
of elements, called  PRESENCE TUPLES. Each such element consists of a STATUS marker (which might 
convey information such as online/offl ine/busy/away/do not disturb), an optional COMMUNICATION 
ADDRESS, and optional OTHER PRESENCE MARKUP. A COMMUNICATION ADDRESS includes a 
COMMUNICATION MEANS and a CONTACT ADDRESS. One type of COMMUNICATION MEANS, 
and the only one defi ned by this model, is INSTANT MESSAGE SERVICE. One type of CONTACT 
ADDRESS, and the only one defi ned by this model, is INSTANT INBOX ADDRESS. However, other possi-
bilities exist: a COMMUNICATION MEANS might indicate some form of telephony, for example, with the 
corresponding CONTACT ADDRESS containing a telephone number.

STATUS is further defi ned by the model to have at least two states that interact with INSTANT MESSAGE 
delivery—OPEN, in which INSTANT MESSAGES will be accepted, and CLOSED, in which INSTANT 
MESSAGES will not be accepted. OPEN and CLOSED may also be applicable to other COMMUNICA-
TION MEANS—OPEN mapping to some state meaning “available” or “open for business” while CLOSED 
means “unavailable” or “closed to business.” The model allows STATUS to include other values, which may 
be interpretable by programs or only by persons. The model also allows STATUS to consist of single or 
multiple values.

4.2.2.5 Presence and Its Effect on INSTANT MESSAGES
An INSTANT INBOX is a receptacle for INSTANT MESSAGES. Its INSTANT INBOX ADDRESS is 
the information that can be included in PRESENCE INFORMATION to defi ne how an INSTANT MES-
SAGE should be delivered to that INSTANT INBOX. As noted above, certain values of the STATUS marker 
indicate whether INSTANT MESSAGES will be accepted at the INSTANT INBOX. The model does not 
otherwise constrain the delivery mechanism or format for instant messages. Reasonable people can disagree 
about whether this omission is a strength or a weakness of this model.

4.2.2.6  PRINCIPALS and Their Agents
This model includes other elements that are useful in characterizing how the protocol and markup work. 
PRINCIPALS are the people, groups, and/or software in the “real world” outside the system that use the sys-
tem as a means of coordination and communication. It is entirely outside the model how the real world maps 
onto PRINCIPALS—the system of model entities knows only that two distinct PRINCIPALS are distinct, 
and two identical PRINCIPALS are identical.

A PRINCIPAL interacts with the system via one of several user agents (INBOX USER AGENT; SENDER 
USER AGENT; PRESENCE USER AGENT; WATCHER USER AGENT). As usual, the different kinds of 
user agents are split apart in this model even though most implementations will combine at least some of 
them. A user agent is purely coupling between a PRINCIPAL and some core entity of the system (respec-
tively, INSTANT INBOX; SENDER; PRESENTITY; WATCHER); (see Figures 4.6 and 4.7.) 
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Watcher 

Presence Service 

Presence 
Protocol 

Presentity 

Watcher UA Presence UA 

(Principal) (Principal) 

Figure 4.6: A PRESENCE SYSTEM.

Instant Inbox 

Instant Message Service 

Instant Message 
Protocol 

Sender 

Inbox UA 

IM IM 

Sender UA 

(Principal) (Principal) 

Figure 4.7: An  INSTANT MESSAGING SYSTEM.

4.2.2.7 Examples
A simple example of the model is a generic “buddy list” application. These applications typically expose the 
user’s presence to others, and make it possible to see the presence of others. So we could describe a buddy 
list as the combination of a PRESENCE USER AGENT and WATCHER USER AGENT for a single PRIN-
CIPAL, using a single PRESENTITY and a single SUBSCRIBER.

One could then extend the example to instant messaging and describe a generic “instant messenger” as 
essentially a buddy list with additional capabilities for sending and receiving instant messages. Hence, an 
instant messenger would be the combination of a PRESENCE USER AGENT, WATCHER USER AGENT, 
INBOX USER AGENT, and SENDER USER AGENT for a single PRINCIPAL, using a single PRESENTITY, 
single SUBSCRIBER, and single INSTANT INBOX, with the PRESENTITY’s PRESENCE INFORMATION 
including an INSTANT INBOX ADDRESS that leads to the INSTANT INBOX.
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4.2.3 Model
As noted, the model entails establishing basic nomenclature. Such nomenclature follows:

 ACCESS RULES:  Constraints on how a PRESENCE SERVICE makes PRESENCE INFORMATION avail-
able to WATCHERS. For each PRESENTITY’s PRESENCE INFORMATION, the applicable ACCESS 
RULES are manipulated by the PRESENCE USER AGENT of a PRINCIPAL that controls the PRE-
SENTITY. Motivation: One needs some way of talking about hiding presence information from people.

 CLOSED:  A distinguished value of the STATUS marker. In the context of INSTANT MESSAGES, this 
value means that the associated INSTANT INBOX ADDRESS, if any, corresponds to an INSTANT 
INBOX that is unable to accept an INSTANT MESSAGE. This value may have an analogous 
meaning for other COMMUNICATION MEANS, but any such meaning is not defi ned by this 
model. Contrast with OPEN.

 COMMUNICATION ADDRESS:  Consists of COMMUNICATION MEANS and CONTACT ADDRESS.
 COMMUNICATION MEANS:  Indicates a method whereby communication can take place. INSTANT 

MESSAGE SERVICE is one example of a COMMUNICATION MEANS.
 CONTACT ADDRESS:  A specifi c point of contact via some COMMUNICATION MEANS. When using an 

INSTANT MESSAGE SERVICE, the CONTACT ADDRESS is an INSTANT INBOX ADDRESS.
 DELIVERY RULES:  Constraints on how an INSTANT MESSAGE SERVICE delivers received INSTANT 

MESSAGES to INSTANT INBOXES. For each INSTANT INBOX, the applicable DELIVERY 
RULES are manipulated by the INBOX USER AGENT of a PRINCIPAL that controls the INSTANT 
INBOX. Motivation: One needs a way of talking about fi ltering instant messages.

 FETCHER:  A form of WATCHER that has asked the PRESENCE SERVICE to for the PRESENCE INFOR-
MATION of one or more PRESENTITIES, but has not asked for a SUBSCRIPTION to be created.

 INBOX USER AGENT:  Means for a PRINCIPAL to manipulate zero or more INSTANT INBOXES 
controlled by that PRINCIPAL. Motivation: This is intended to isolate the core functionality of 
an INSTANT INBOX from how it might appear to be manipulated by a product. This manipula-
tion includes fetching messages, deleting messages, and setting DELIVERY RULES. The INBOX 
USER AGENT, INSTANT INBOX, and INSTANT MESSAGE SERVICE can be colocated can be 
or distributed across machines.

 INSTANT INBOX:  Receptacle for INSTANT MESSAGES intended to be read by the INSTANT 
INBOX’s PRINCIPAL.

 INSTANT INBOX ADDRESS:  Indicates whether and how the PRESENTITY’s PRINCIPAL can receive 
an INSTANT MESSAGE in an INSTANT INBOX. The STATUS and INSTANT INBOX ADDRESS 
information are suffi cient to determine whether the PRINCIPAL appears ready to accept the IN-
STANT MESSAGE. Motivation: The defi nition is pretty loose about exactly how any of this works, 
even leaving open the possibility of reusing parts of the email infrastructure for instant messaging.

 INSTANT MESSAGE:  An identifi able unit of data, of small size, to be sent to an INSTANT INBOX 
(this defi nition seeks to avoid the possibility of transporting an arbitrary-length stream labelled as 
an “instant message.”)

 INSTANT MESSAGE PROTOCOL:  The messages that can be exchanged between a SENDER USER 
AGENT and an INSTANT MESSAGE SERVICE, or between an INSTANT MESSAGE SERVICE 
and an INSTANT INBOX.

 INSTANT MESSAGE SERVICE:  Accepts and delivers INSTANT MESSAGES.
• May require authentication of SENDER USER AGENTS and/or INSTANT INBOXES.
• May have different authentication requirements for different INSTANT INBOXES, and may 

also have different authentication requirements for different INSTANT INBOXES controlled 
by a single PRINCIPAL.
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• May have an internal structure involving multiple SERVERS and/or PROXIES. There may be 
complex patterns of redirection and/or proxying while retaining logical connectivity to a single 
INSTANT MESSAGE SERVICE. Note that an INSTANT MESSAGE SERVICE does not 
require having a distinct SERVER—the service may be implemented as direct communication 
between SENDER and INSTANT INBOX.

• May have an internal structure involving other INSTANT MESSAGE SERVICES, which may 
be independently accessible in their own right as well as being reachable through the initial 
INSTANT MESSAGE SERVICE.

 NOTIFICATION:  A message sent from the PRESENCE SERVICE to a SUBSCRIBER when there is a 
change in the PRESENCE INFORMATION of some PRESENTITY of interest, as recorded in one 
or more SUBSCRIPTIONS.

 OPEN:  A distinguished value of the STATUS marker. In the context of INSTANT MESSAGES, this 
value means that the associated INSTANT INBOX ADDRESS, if any, corresponds to an INSTANT 
INBOX that is ready to accept an INSTANT MESSAGE. This value may have an analogous mean-
ing for other COMMUNICATION MEANS, but any such meaning is not defi ned by this model. 
Contrast with CLOSED.

 OTHER PRESENCE MARKUP:  Any additional information included in the PRESENCE INFORMA-
TION of a PRESENTITY. The model does not defi ne this further.

 POLLER:  A FETCHER that requests PRESENCE INFORMATION on a regular basis.
 PRESENCE INFORMATION:  Consists of one or more PRESENCE TUPLES.
 PRESENCE PROTOCOL:  The messages that can be exchanged between a PRESENTITY and a PRES-

ENCE SERVICE, or a WATCHER and a PRESENCE SERVICE.
 PRESENCE SERVICE:  Accepts, stores, and distributes PRESENCE INFORMATION.

• May require authentication of PRESENTITIES, and/or WATCHERS.
• May have different authentication requirements for different PRESENTITIES.
• May have different authentication requirements for different WATCHERS, and may also have 

different authentication requirements for different PRESENTITIES being watched by a single 
WATCHER.

• May have an internal structure involving multiple SERVERS and/or PROXIES. There may be 
complex patterns of redirection and/or proxying while retaining logical connectivity to a single 
PRESENCE SERVICE. Note that a PRESENCE SERVICE does not require having a distinct 
SERVER—the service may be implemented as direct communication among PRESENTITY 
and WATCHERS.

• May have an internal structure involving other PRESENCE SERVICES, which may be 
independently accessible in their own right as well as being reachable through the initial 
PRESENCE SERVICE.

 PRESENCE TUPLE:  Consists of a STATUS, an optional COMMUNICATION ADDRESS, and optional 
OTHER PRESENCE MARKUP.

 PRESENCE USER AGENT:  Means for a PRINCIPAL to manipulate zero or more PRESENTITIES. 
Motivation: This is essentially a “model/view” distinction. The PRESENTITY is the model of the 
presence being exposed and is independent of its manifestation in any user interface. The PRES-
ENCE USER AGENT, PRESENTITY, and PRESENCE SERVICE can be colocated or can be 
distributed across machines.

 PRESENTITY (presence entity):  Provides PRESENCE INFORMATION to a PRESENCE SERVICE. 
Note that the presentity is not (usually) located in the presence service: The presence service only 
has a recent version of the presentity’s presence information. The presentity initiates changes in the 
presence information to be distributed by the presence service.
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 PRINCIPAL:  Human, program, or collection of humans and/or programs that chooses to appear to the 
PRESENCE SERVICE as a single actor, distinct from all other PRINCIPALS. Motivation: One 
needs a clear notion of the actors outside the system. “Principal” seems as good a term as any.

 PROXY:  A SERVER that communicates PRESENCE INFORMATION, INSTANT MESSAGES, SUB-
SCRIPTIONS and/or NOTIFICATIONS to another SERVER. Sometimes a PROXY acts on behalf 
of a PRESENTITY, WATCHER, or INSTANT INBOX.

 SENDER:  Source of INSTANT MESSAGES to be delivered by the INSTANT MESSAGE SERVICE.
 SENDER USER AGENT:  Means for a PRINCIPAL to manipulate zero or more SENDERS.
 SERVER:  An indivisible unit of a PRESENCE SERVICE or INSTANT MESSAGE SERVICE.
 SPAM:  Unwanted INSTANT MESSAGES.
 SPOOFING:  A PRINCIPAL improperly imitating another PRINCIPAL.
 STALKING:  Using PRESENCE INFORMATION to infer the whereabouts of a PRINCIPAL, especially 

for malicious or illegal purposes.
 STATUS:  A distinguished part of the PRESENCE INFORMATION of a PRESENTITY. STATUS has 

at least the mutually-exclusive values OPEN and CLOSED, which have meaning for the acceptance 
of INSTANT MESSAGES, and may have meaning for other COMMUNICATION MEANS. There 
may be other values of STATUS that do not imply anything about INSTANT MESSAGE accep-
tance. These other values of STATUS may be combined with OPEN and CLOSED or they may be 
mutually exclusive with those values.

 Some implementations may combine STATUS with other entities. For example, an implementation 
might make an INSTANT INBOX ADDRESS visible only when the INSTANT INBOX can accept 
an INSTANT MESSAGE. Then, the existence of an INSTANT INBOX ADDRESS implies OPEN, 
while its absence implies CLOSED.

 SUBSCRIBER:  A form of WATCHER that has asked the PRESENCE SERVICE to notify it immedi-
ately of changes in the PRESENCE INFORMATION of one or more PRESENTITIES.

 SUBSCRIPTION:  The information kept by the PRESENCE SERVICE about a SUBSCRIBER’s request 
to be notifi ed of changes in the PRESENCE INFORMATION of one or more PRESENTITIES.

 VISIBILITY RULES:  Constraints on how a PRESENCE SERVICE makes WATCHER INFORMATION 
available to WATCHERS. For each WATCHER’s WATCHER INFORMATION, the applicable VIS-
IBILITY RULES are manipulated by the WATCHER USER AGENT of a PRINCIPAL that controls 
the WATCHER.

 WATCHER:  Requests PRESENCE INFORMATION about a PRESENTITY, or WATCHER INFOR-
MATION about a WATCHER, from the PRESENCE SERVICE. Special types of WATCHER are 
FETCHER, POLLER, and SUBSCRIBER.

 WATCHER INFORMATION:  Information about WATCHERS that have received PRESENCE INFOR-
MATION about a particular PRESENTITY within a particular recent span of time. WATCHER 
INFORMATION is maintained by the PRESENCE SERVICE, which may choose to present it in 
the same form as PRESENCE INFORMATION; that is, the service may choose to make WATCH-
ERS look like a special form of PRESENTITY. Motivation: If a PRESENTITY wants to know who 
knows about it, it is not enough to examine only information about SUBSCRIPTIONS. A WATCH-
ER might repeatedly fetch information without ever subscribing. Alternately, a WATCHER might 
repeatedly subscribe, then cancel the SUBSCRIPTION. Such WATCHERS should be visible to the 
PRESENTITY if the PRESENCE SERVICE offers WATCHER INFORMATION, but will not be 
appropriately visible if the WATCHER INFORMATION includes only SUBSCRIPTIONS.

 WATCHER USER AGENT:  Means for a PRINCIPAL to manipulate zero or more WATCHERS con-
trolled by that PRINCIPAL. Motivation: As with PRESENCE USER AGENT and PRESENTITY, 
the distinction here is intended to isolate the core functionality of a WATCHER from how it might 

Minoli_Book.indb   176Minoli_Book.indb   176 3/9/2006   6:30:27 PM3/9/2006   6:30:27 PM



Basic “Presence” Concepts 

177

appear to be manipulated by a product. WATCHER USER AGENT, WATCHER, and PRESENCE 
SERVICE can be colocated or can be distributed across machines.

4.3  Instant Messaging/Presence  Protocol Requirements
As noted at the beginning of this chapter, presence is a means for fi nding, retrieving, and subscribing to 
changes in the presence information (e.g., “online” or “offl ine”) of other users. Instant messaging is a means 
for sending small, simple messages that are delivered immediately to online users. VoIP applications are 
envisioned. Unfortunately, up-to-now, applications of presence and instant messaging currently use indepen-
dent, nonstandard and noninteroperable protocols developed by various vendors [AGG200001]. The goal of the 
Instant Messaging and Presence Protocol (IMPP) is to defi ne a standard protocol so that independently devel-
oped applications of instant messaging and/or presence can interoperate across the Internet. RFC 2779 defi nes 
a minimal set of requirements that IMPP must meet. This treatment is based on RFC 2779 [AGG200001].

4.3.1  Machinery
The terms are defi ned above (from RFC 2778) are used in this discussion. Additionally, the following terms 
are used:

 ADMINISTRATOR:  A PRINCIPAL with authority over local computer and network resources, who 
manages local DOMAINS or FIREWALLS. For security and other purposes, an ADMINISTRA-
TOR often needs or wants to impose restrictions on network usage based on traffi c type, content, 
volume, or endpoints. A PRINCIPAL’s ADMINISTRATOR has authority over some or all of that 
PRINCIPAL’s computer and network resources.

 DOMAIN:  A portion of a NAMESPACE.
 ENTITY:  Any of PRESENTITY, SUBSCRIBER, FETCHER, POLLER, or WATCHER (all defi ned 

above as per RFC 2778).
 FIREWALL:  A point of administrative control over connectivity. Depending on the policies being 

enforced, parties may need to take unusual measures to establish communications through the 
FIREWALL.

 IDENTIFIER:  A means of indicating a point of contact, intended for public use such as on a busi-
ness card. Telephone numbers, email addresses, and typical home page URLs are all examples of 
IDENTIFIERS in other systems. Numeric IP addresses like 10.0.0.26 are not, and neither are URLs 
containing numerous CGI parameters or long arbitrary identifi ers.

 INTENDED RECIPIENT:  The PRINCIPAL to whom the sender of an INSTANT MESSAGE is sending it.
 NAMESPACE:  The system that maps from a name of an ENTITY to the concrete implementation of 

that ENTITY. A NAMESPACE may be composed of a number of distinct DOMAINS.
 OUT OF CONTACT:  A situation in which some ENTITY and the PRESENCE SERVICE cannot 

communicate.
 SUCCESSFUL DELIVERY:  A situation in which an INSTANT MESSAGE was transmitted to an 

INSTANT INBOX for the INTENDED RECIPIENT, and the INSTANT INBOX acknowledged its 
receipt. SUCCESSFUL DELIVERY usually also implies that an INBOX USER AGENT has handled 
the message in a way chosen by the PRINCIPAL. However, SUCCESSFUL DELIVERY does not 
imply that the message was actually seen by that PRINCIPAL.

4.3.2 Shared Requirements
This section describes requirements that are common to both an PRESENCE SERVICE and an INSTANT 
MESSAGE SERVICE. Section 4.3.3 describes requirements specifi c to a PRESENCE SERVICE, while 
Section 4.3.4 describes requirements specifi c to an INSTANT MESSAGE SERVICE (security requirements 
are not covered herewith—refer to the RFC for details.) 
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It is expected that Presence and Instant Messaging services will be particularly valuable to users over mobile IP 
wireless access devices. Indeed the number of devices connected to the Internet via wireless means is expected 
to grow substantially in the coming years. It is not reasonable to assume that separate protocols will be available 
for the wireless portions of the Internet. In addition, we note that wireless infrastructure is maturing rapidly; 
the work undertaken by this group should take into account the expected state of the maturity of the technol-
ogy in the time frame in which the Presence and Instant Messaging protocols are expected to be deployed.

To this end, the protocols designed by this Working Group must be suitable for operation in a context 
typically associated with mobile wireless access devices, viz. high latency, low bandwidth and possibly 
intermittent connectivity (which lead to a desire to minimize round-trip delays), modest computing power, 
battery constraints, small displays, etc. In particular, the protocols must be designed to be reasonably effi cient 
for small payloads.

4.3.2.1  Namespace and Administration
Requirements are as follows: 

1. The protocols must allow a PRESENCE SERVICE to be available independent of whether an 
INSTANT MESSAGE SERVICE is available, and vice-versa;

2. The protocols must not assume that an INSTANT INBOX is necessarily reached by the same 
IDENTIFIER as that of a PRESENTITY. Specifi cally, the protocols must assume that some 
INSTANT INBOXes may have no associated PRESENTITIES, and vice versa;

3. The protocols must also allow an INSTANT INBOX to be reached via the same IDENTIFIER as 
the IDENTIFIER of some PRESENTITY;

4. The administration and naming of ENTITIES within a given DOMAIN must be able to operate 
independently of actions in any other DOMAIN;

5. The protocol must allow for an arbitrary number of DOMAINS within the NAMESPACE.

4.3.2.2  Scalability
Requirements are as follows: 

1. It must be possible for ENTITIES in one DOMAIN to interoperate with ENTITIES in another 
DOMAIN, without the DOMAINS having previously been aware of each other;

2. The protocol must be capable of meeting  its other functional and performance requirements even 
when;
• There are millions of ENTITIES within a single DOMAIN;
• There are millions of DOMAINS within the singleNAMESPACE;
• Every single SUBSCRIBER has SUBSCRIPTIONS to hundreds of PRESENTITIES;
• Hundreds of distinct SUBSCRIBERS have SUBSCRIPTIONS to a single PRESENTITY;
• Every single SUBSCRIBER has SUBSCRIPTIONS to PRESENTITIES in hundreds of 

distinct DOMAINS.

These are protocol design goals; implementations may choose to place lower limits.

4.3.2.3  Access Control
Requirements are as follows: 

1. The PRINCIPAL controlling a PRESENTITY MUST be able to control:
• Which WATCHERS can observe that PRESENTITY’s PRESENCE INFORMATION;
• Which WATCHERS can have SUBSCRIPTIONS to that PRESENTITY’s PRESENCE 

INFORMATION;
• What PRESENCE INFORMATION a particular WATCHER will see for that PRESENTITY, 
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regardless of whether the WATCHER gets it by fetching or NOTIFICATION;
• Which other PRINCIPALS, if any, can update the PRESENCE INFORMATION of that 

PRESENTITY.
2. The PRINCIPAL controlling an INSTANT INBOX must be able to control:

• Which other PRINCIPALS, if any, can send INSTANT MESSAGES to that INSTANT INBOX;
• Which other PRINCIPALS, if any, can read INSTANTMESSAGES from that INSTANT INBOX.

Access control MUST be independent of presence: the PRESENCE SERVICE MUST be able to make access 
control decisions even when the PRESENTITY is OUT OF CONTACT.

4.3.2.4  Network Topology
Note that intermediaries such as PROXIES may be necessitated between IP and non-IP networks, and by an 
end-user’s desire to provide anonymity and hide their IP address.

Requirements are as follows: 

1. The protocol must allow the creation of a SUBSCRIPTION both directly and via intermediaries, 
such as PROXIES;

2. The protocol must allow the sending of a NOTIFICATION both directly and via intermediaries, 
such as PROXIES;

3. The protocol must allow the sending of an INSTANT MESSAGE both directly and via intermediar-
ies, such as PROXIES.

The protocol proxying facilities and transport practices must allow ADMINISTRATORS ways to enable and 
disable protocol activity through existing and commonly-deployed FIREWALLS. The protocol must specify 
how it can be effectively fi ltered by such FIREWALLS.

 Message Encryption and  Authentication
The protocol must provide means to ensure confi dence that a received message (NOTIFICATION 
or INSTANT MESSAGE) has not been corrupted or tampered with.
The protocol must provide means to ensure confi dence that a received message (NOTIFICATION 
or INSTANT MESSAGE) has not been recorded and played back by an adversary.
The protocol must provide means to ensure that a sent message (NOTIFICATION or INSTANT 
MESSAGE) is only readable by ENTITIES that the sender allows.
The protocol must allow any client to use the means to ensure noncorruption, nonplayback, and 
privacy, but the protocol must not require that all clients use these means at all times.

4.3.3 Additional Requirements for PRESENCE INFORMATION
The requirements in this section are applicable only to PRESENCE INFORMATION and not to INSTANT 
MESSAGES. 

Requirements are as follows: 

Common Presence Format
All ENTITIES must produce and consume at least a common base format for PRESENCE 
INFORMATION.
The common presence format must include a means to uniquely identify the PRESENTITY whose 
PRESENCE INFORMATION is reported.
The common presence format must include a means to encapsulate contact information for the 
PRESENTITY’s PRINCIPAL (if applicable), such as email address, telephone number, postal 
address, or the like.

•

•

•

•

•

•

•
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There must be a means of extending the common presence format to represent additional informa-
tion not included in the common format without undermining or rendering invalid the fi elds of the 
common format.
The working group must defi ne the extension and registration mechanisms for presence information 
schema, including new STATUS conditions and new forms for OTHER PRESENCE MARKUP.
The presence format should be based on IETF standards such as vCard (RFC 2426) if possible.

 Presence Lookup and Notifi cation
A FETCHER MUST be able to fetch a PRESENTITY’s PRESENCE INFORMATION even when 
the PRESENTITY is OUT OF CONTACT.
A SUBSCRIBER MUST be able to request a SUBSCRIPTION to a PRESENTITY’s PRESENCE 
INFORMATION, even when the PRESENTITY is OUT OF CONTACT.
If the PRESENCE SERVICE has SUBSCRIPTIONS for a PRESENTITY’s PRESENCE INFOR-
MATION and that PRESENCE INFORMATION changes, the PRESENCE SERVICE MUST 
deliver a NOTIFICATION to each SUBSCRIBER, unless prevented by the PRESENTITY’s AC-
CESS RULES.
The protocol must provide a mechanism for detecting when a PRESENTITY or SUBSCRIBER has 
gone OUT OF CONTACT.
The protocol must not depend on a PRESENTITY or SUBSCRIBER gracefully telling the service 
that it will no longer be in communication since a PRESENTITY or SUBSCRIBER may go OUT 
OF CONTACT due to unanticipated failures.

 Presence Caching and Replication
The protocol must include mechanisms to allow PRESENCE INFORMATION to be cached.
The protocol must include mechanisms to allow cached PRESENCE INFORMATION to be up-
dated when the master copy changes.
The protocol caching facilities must not circumvent established ACCESS RULES or restrict choice 
of authentication/encryption mechanisms.

Performance
When a PRESENTITY changes its PRESENCE INFORMATION, any SUBSCRIBER to that informa-
tion MUST be notifi ed of the changed information rapidly, except when such notifi cation is entirely 
prevented by ACCESS RULES. This requirement is met if each SUBSCRIBER’s NOTIFICATION 
is transported as rapidly as an INSTANT MESSAGE would be transported to an INSTANT INBOX.

4.3.4 Additional Requirements for  INSTANT MESSAGES
The requirements in section 4.3.4 are applicable only to INSTANT MESSAGES and not to PRESENCE 
INFORMATION.

 Common Message Format
All ENTITIES sending and receiving INSTANT MESSAGES must implement at least a common 
base format for INSTANT MESSAGES.
The common base format for an INSTANT MESSAGE must identify the sender and intended recipient.
The common message format must include a return address for the receiver to reply to the sender 
with another INSTANT MESSAGE.
The common message format should include standard forms of addresses or contact means for 
media other than INSTANT MESSAGES, such as telephone numbers or email addresses.

•

•

•

•

•

•

•

•

•
•

•

•

•

•
•

•
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The common message format must permit the encoding and identifi cation of the message payload 
to allow for non-ASCII or encrypted content.
The protocol must refl ect best current practices related to internationalization.
The protocol must refl ect best current practices related to accessibility.
The working group must defi ne the extension and registration mechanisms for the message format 
including new fi elds and new schemes for INSTANT INBOX ADDRESSES.
The working group must determine whether the common message format includes fi elds for num-
bering or identifying messages. If there are such fi elds, the working group must defi ne the scope 
within which such identifi ers are unique and the acceptable means of generating such identifi ers.
The common message format should be based on IETF-standard MIME (RFC 2045).

 Reliability
The protocol must include mechanisms so that a sender can be informed of the SUCCESSFUL 
DELIVERY of an INSTANT MESSAGE or reasons for failure. The working group must determine 
what mechanisms apply when fi nal delivery status is unknown, such as when a message is relayed 
to non-IMPP systems.

Performance
The transport of INSTANT MESSAGES must be suffi ciently rapid to allow for comfortable conver-
sational exchanges of short messages.

Presence Format
The common presence format must defi ne a minimum standard presence schema suitable for 
INSTANT MESSAGE SERVICES.
When used in a system supporting INSTANT MESSAGES, the common presence format must 
include a means to represent the STATUS conditions OPEN and CLOSED.
The STATUS conditions OPEN and CLOSED may also be applied to messaging or communication 
modes other than INSTANT MESSAGE SERVICES.

4.4  SIP Applications
This section briefl y describes the usage of the Session Initiation Protocol (SIP) for subscriptions and noti-
fi cations of presence. As noted, presence is defi ned as the willingness and ability of a user to communicate 
with other users on the network. Historically, presence has been limited  to “on-line” and “off-line” indica-
tors; the notion of presence here is broader. Subscriptions and notifi cations of presence are supported by 
defi ning an event package within the general SIP event notifi cation framework. This protocol is also com-
pliant with the Common Presence Profi le (CPP) framework. This discussion is based on IETF RFC 3856 
[ROS200401].

4.4.1 Introduction
RFC 2778 discussed earlier defi nes a model and terminology for describing systems that provide presence 
information. In that model, a presence service is a system that accepts, stores, and distributes presence 
information to interested parties, called watchers. A presence protocol is a protocol for providing a presence 
service over the Internet or any IP network.

RFC 3856 proposed the usage of SIP as a presence protocol. This is accomplished through a concrete 
instantiation of the general event notifi cation framework defi ned for SIP, and as such, makes use of the SUB-
SCRIBE and NOTIFY methods. SIP is particularly well suited as a presence protocol. SIP location services 
already contain presence information in the form of registrations. Furthermore, SIP networks are capable of 
routing requests from any user on the network to the server that holds the registration state for a user. As this 

•
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state is a key component of user presence, those SIP networks can allow SUBSCRIBE requests to be routed 
to the same server. This means that SIP networks can be reused to establish global connectivity for presence 
subscriptions and notifi cations.

4.4.2 Terminology
This event package is based on the concept of a presence agent which is a new logical entity that is capable 
of accepting subscriptions, storing subscription state, and generating notifi cations when there are changes 
in presence. The entity is defi ned as a logical one since it is generally co-resident with another entity. This 
event package is also compliant with the CPP framework that has been defi ned in RFC 3859. This allows 
SIP for presence to easily interwork with other presence systems compliant to CPP.

4.4.3 Defi nitions
This section uses the terms as defi ned in RFC 2778. Additionally, the following terms are defi ned and/or 
additionally clarifi ed:

 Presence User Agent (PUA):  A Presence User Agent manipulates presence information for a presentity. 
This manipulation can be the side effect of some other action (such as sending a SIP REGISTER 
request to add a new Contact) or can be done explicitly through the publication of presence docu-
ments. We explicitly allow multiple PUAs per presentity. This means that a user can have many 
devices, such as a cell phone and Personal Digital Assistant (PDA), each of which is independently 
generating a component of the overall presence information for a presentity. PUAs push data into 
the presence system but are outside of it in that they do not receive SUBSCRIBE messages or send 
NOTIFY messages.

 Presence Agent (PA):  A presence agent is a SIP user agent which is capable of receiving SUBSCRIBE 
requests, responding to them, and generating notifi cations of changes in presence state. A presence 
agent must have knowledge of the presence state of a presentity. This means that it must have access 
to presence data manipulated by PUAs for the presentity. One way to do this is by co-locating the PA 
with the proxy/registrar. Another way is to co-locate it with the presence user agent of the presentity. 
However, these are not the only ways, and this specifi cation makes no recommendations about where 
the PA function should be located. A PA is always addressable with a SIP URI that uniquely identi-
fi es the presentity (i.e., sip:joe@example.com). There can be multiple PAs for a particular presentity, 
each of which handles some subset of the total subscriptions currently active for the presentity. A PA 
is also a notifi er (defi ned in RFC 3265) that supports the presence event package.

 Presence Server:  A presence server is a physical entity that can act as either a presence agent or as a 
proxy server for SUBSCRIBE requests. When acting as a PA, it is aware of the presence informa-
tion of the presentity through some protocol means. When acting as a proxy, the SUBSCRIBE 
requests are proxied to another entity that may act as a PA.

 Edge Presence Server:  An edge presence server is a presence agent that is co-located with a PUA. It 
is aware of the presence information of the presentity because it is co-located with the entity that 
manipulates this presence information.

4.4.4 Overview of Operation
In this section, we present an overview of the operation of this event package. The overview describes be-
havior that is documented in part here, in part within the SIP event framework (RFC 3265), and in part in the 
SIP specifi cation (RFC 3261), in order to provide clarity on this package for readers only casually familiar 
with those specifi cations. However, the detailed semantics of this package require the reader to be familiar 
with SIP events and the SIP specifi cation itself.
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When an entity—the subscriber—wishes to learn about presence information from some user, it creates a 
SUBSCRIBE request. This request identifi es the desired presentity in the Request-URI using a SIP URI, 
SIPS URI (RFC 3261), or a presence (pres) URI (RFC 3859). The SUBSCRIBE request is carried along SIP 
proxies as any other SIP request would be. In most cases, it eventually arrives at a presence server which can 
either generate a response to the request (in which case it acts as the presence agent for the presentity) or 
proxy it on to an edge presence server. If the edge presence server handles the subscription, it is acting as the 
presence agent for the presentity. The decision at a presence server about whether to proxy or terminate the 
SUBSCRIBE is a local matter; however, we describe one way to effect such a confi guration using REGISTER.

The presence agent (whether in the presence server or edge presence server) fi rst authenticates the subscrip-
tion, then authorizes it. The means for authorization are outside the scope of this protocol, and we expect 
that many mechanisms will be used. If authorized, a 200 OK response is returned. If authorization could not 
be obtained at this time, the subscription is considered “pending,” and a 202 response is returned. In both 
cases, the PA sends an immediate NOTIFY message containing the state of the presentity and of the sub-
scription. The presentity state may be bogus in the case of a pending subscription; for example, indicating 
offl ine no matter what the actual state of the presentity. This is to protect the privacy of the presentity who 
may not want to reveal that they have not provided authorization for the subscriber. As the state of the pre-
sentity changes, the PA generates NOTIFYs containing those state changes to all subscribers with authorized 
subscriptions. Changes in the state of the subscription itself can also trigger NOTIFY requests; that state 
is carried in the Subscription-State header fi eld of the NOTIFY, and would typically indicate whether the 
subscription is active or pending.

The SUBSCRIBE message establishes a “dialog” with the presence agent. A dialog is defi ned in RFC 3261, 
and it represents the SIP state between a pair of entities to facilitate peer-to-peer message exchanges. This 
state includes the sequence numbers for messages in both directions (SUBSCRIBE from the subscriber, 
NOTIFY from the presence agent) in addition to a route set and remote target URI. The route set is a list of 
SIP (or SIPS) URIs which identify SIP proxy servers that are to be visited along the path of SUBSCRIBE 
refreshes or NOTIFY requests. The remote target URI is the SIP or SIPS URI that identifi es the target of the 
message—the subscriber in the case of NOTIFY, or the presence agent in the case of a SUBSCRIBE refresh.

SIP provides a procedure called record-routing that allows for proxy servers to request to be on the path of 
NOTIFY messages and SUBSCRIBE refreshes. This is accomplished by inserting a URI into the Record-
Route header fi eld in the initial SUBSCRIBE request.

The subscription persists for a duration that is negotiated as part of the initial SUBSCRIBE. The subscriber 
will need to refresh the subscription before its expiration if they wish to retain the subscription. This is 
accomplished by sending a  SUBSCRIBE refresh within the same dialog established by the initial SUB-
SCRIBE. This SUBSCRIBE is nearly identical to the initial one but contains a tag in the To header fi eld, a 
higher CSeq header fi eld value, and possibly a set of Route header fi eld values that identify the path of prox-
ies the request is to take.

The subscriber can terminate the subscription by sending a SUBSCRIBE within the dialog with an Expires 
header fi eld (which indicates duration of the subscription) value of zero. This causes an immediate termina-
tion of the subscription. A NOTIFY request is then generated by the presence agent with the most recent 
state. In fact, behavior of the presence agent for handling a SUBSCRIBE request with Expires of zero is no 
different than for any other expiration value; pending or authorized SUBSCRIBE requests result in a trig-
gered NOTIFY with the current presentity and subscription state.

The presence agent can terminate the subscription at any time. To do so, it sends a NOTIFY request with a 
Subscription-State header fi eld indicating that the subscription has been terminated. A reason parameter can 
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be supplied which provides the reason. It is also possible to fetch the current presence state resulting in a 
one-time notifi cation containing the current state. This is accomplished by sending a SUBSCRIBE request 
with an immediate expiration.

4.4.5 Usage of  Presence URIs
A presentity is identifi ed in the most general way through a presence URI, which is of the form pres:
user@domain. These URIs are resolved to protocol specifi c URIs, such as the SIP or SIPS URI, through 
domain-specifi c mapping policies maintained on a server.

It is very possible that a user will have both a SIP (and/or SIPS) URI and a pres URI to identify both them-
self and other users. This leads to questions about how these URI relate and which are to be used.

In some instances, a user starts with one URI format, such as the pres URI, and learns a URI in a differ-
ent format through some protocol means. As an example, a SUBSCRIBE request sent to a pres URI will 
result in learning a SIP or SIPS URI for the presentity from the Contact header fi eld of the 200 OK to the 
SUBSCRIBE request. As another example, a DNS mechanism might be defi ned that would allow lookup 
of a pres URI to obtain a SIP or SIPS URI. In cases where one URI is learned from another through proto-
col means, those means will often provide some kind of scoping that limit the lifetime of the learned URI. 
DNS, for example, provides a TTL which would limit the scope of the URI. These scopes are very useful to 
avoid stale or confl icting URIs for identifying the same resource. To ensure that a user can always determine 
whether a learned URI is still valid, it is recommended that systems which provide lookup services for pres-
ence URIs have some kind of scoping mechanism.

If a subscriber is only aware of the protocol-independent pres URI for a presentity, it follows the procedures 
defi ned in RFC 3861. These procedures will result in the placement of the pres URI in the Request-URI of 
the SIP request, followed by the usage of the DNS procedures defi ned in RFC 3861 to determine the host 
to send the SIP request to. Of course, a local outbound proxy may alternatively be used as specifi ed in RFC 
3261. If the subscriber is aware of both the protocol-independent pres URI and the SIP or SIPS URI for the 
same presentity and both are valid (as discussed above), it should use the pres URI format. Of course, if the 
subscriber only knows the SIP URI for the presentity, that URI is used and standard RFC 3261 processing 
will occur. When the pres URI is used, any proxies along the path of the SUBSCRIBE request which do not 
understand the URI scheme will reject the request. As such, it is expected that many systems will be initially 
deployed that only provide users with a SIP URI.

SUBSCRIBE messages also contain logical identifi ers that defi ne the originator and recipient of the sub-
scription (the To and From header fi elds). These headers can take either a pres or SIP URI. When the 
subscriber is aware of both a pres and SIP URI for its own identity, it should use the pres URI in the From 
header fi eld. Similarly, when the subscriber is aware of both a pres and a SIP URI for the desired presentity, 
it should use the pres URI in the To header fi eld.

The usage of the pres URI instead of the SIP URI within the SIP message supports interoperability through 
gateways to other CPP-compliant systems. It provides a protocol-independent form of identifi cation which 
can be passed between systems. Without such an identity, gateways would be forced to map SIP URIs into 
the addressing format of other protocols. Generally, this is done by converting the SIP URI to the form 
<foreign-protocol-scheme>:<encoded SIP URI>@<gateway>. This is commonly done in email systems, and 
has many known problems. The usage of the pres URI is a should, and not a must, to allow for cases where 
it is known that there are no gateways present or where the usage of the pres URI will cause interoperability 
problems with SIP components that do not support the pres URI.

The Contact, Record-Route, and Route fi elds do not identify logical entities, but rather concrete ones used 
for SIP messaging. SIP specifi es rules for their construction.
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4.4.6  Presence Event Package
The SIP event framework defi nes a SIP extension for subscribing to, and receiving notifi cations of, events. It 
leaves the defi nition of many aspects of these events to concrete extensions known as event packages. This 
RFC qualifi es as an event package. This section fi lls in the information required for all event packages by 
RFC 3265.

4.4.6.1 Package Name
The name of this package is “presence.” As specifi ed in RFC 3265, this value appears in the Event header 
fi eld present in SUBSCRIBE and NOTIFY requests.

Example: Event: presence

4.4.6.2 Event Package Parameters
The SIP event framework allows event packages to defi ne additional parameters carried in the Event header 
fi eld. This package, “presence,” does not defi ne any additional parameters.

4.4.6.3  SUBSCRIBE Bodies
A SUBSCRIBE request MAY contain a body. The purpose of the body depends on its type. Subscriptions 
will normally not contain bodies. The Request-URI, which identifi es the presentity, combined with the event 
package name, is suffi cient for presence.

One type of body that can be included in a SUBSCRIBE request is a fi lter document. These fi lters request 
that only certain presence events generate notifi cations, or request for a restriction on the set of data returned 
in NOTIFY requests. For example, a presence fi lter might specify that the notifi cations should only be 
generated when the status of the user’s instant inbox changes. It might also say that the content of these no-
tifi cations should only contain the status of the instant inbox. Filter documents are not specifi ed in this RFC, 
and at the time of writing, are expected to be the subject of future standardization activity.

Honoring of these fi lters is at the policy discretion of the PA.

If the SUBSCRIBE request does not contain a fi lter, this tells the PA that no fi lter is to be applied. The PA 
should send NOTIFY requests at the discretion of its own policy.

4.4.6.4  Subscription Duration
User presence changes as a result of many events. Some examples are:

Turning on and off of a cell phone;
Modifying the registration from a softphone;
Changing the status on an instant messaging tool.

These events are usually triggered by human intervention, and occur with a frequency on the order of seconds 
to hours. As such, subscriptions should have an expiration in the middle of this range which is roughly one 
hour. Therefore, the default expiration time for subscriptions within this package is 3600 seconds. As per 
RFC 3265, the subscriber MAY specify an alternate expiration in the Expires header fi eld.

4.4.6.5  NOTIFY Bodies
As described in RFC 3265, the NOTIFY message will contain bodies that describe the state of the subscribed 
resource. This body is in a format listed in the Accept header fi eld of the SUBSCRIBE or a package-specifi c 
default if the Accept header fi eld was omitted from the SUBSCRIBE.

In this event package, the body of the notifi cation contains a presence document. This RFC describes 
the presence of the presentity that was subscribed to. All subscribers and notifi ers MUST support the 

•
•
•

Minoli_Book.indb   185Minoli_Book.indb   185 3/9/2006   6:30:29 PM3/9/2006   6:30:29 PM



Chapter 4

186

 “application/pidf+xml” presence data format described in RFC 3863. The subscribe request may contain an 
Accept header fi eld. If no such header fi eld is present, it has a default value of “application/pidf+xml.” If the 
header fi eld is present, it must include “application/pidf+xml,” and may include any other types capable of 
representing user presence.

4.4.6.6 Notifi er Processing of  SUBSCRIBE Requests
Based on the proxy routing procedures defi ned in the SIP specifi cation, the SUBSCRIBE request will arrive 
at a Presence Agent (PA). This subsection defi nes package-specifi c processing at the PA of a SUBSCRIBE 
request. General processing rules for requests are covered in Section 8.2 of RFC 3261, in addition to general 
SUBSCRIBE processing in RFC 3265.

User presence is highly sensitive information. Because the implications of divulging presence information 
can be severe, strong requirements are imposed on the PA regarding subscription processing, especially 
related to authentication and authorization.

4.4.6.6.1  Authentication
A presence agent must authenticate all subscription requests. This authentication can be done using any 
of the mechanisms defi ned in RFC 3261. Note that digest is mandatory to implement as specifi ed in RFC 
3261. In single-domain systems where the subscribers all have shared secrets with the PA, the combination 
of digest authentication over  Transport Layer Security (TLS) provides a secure and workable solution for 
authentication. This use case is described in Section 26.3.2.1 of RFC 3261. In interdomain scenarios, estab-
lishing an authenticated identity of the subscriber is harder. It is anticipated that authentication will often be 
established through transitive trust. SIP mechanisms for network asserted identity can be applied to establish 
the identity of the subscriber.

A presentity may choose to represent itself with a SIPS URI. By “represent itself,” it means that the user 
represented by the presentity hands out, on business cards, web pages, and so on, a SIPS URI for their pre-
sentity. The semantics associated with this URI, as described in RFC 3261, require TLS usage on each hop 
between the subscriber and the server in the domain of the URI. This provides additional assurances (but no 
absolute guarantees) that identity has been verifi ed at each hop.

Another mechanism for authentication is S/MIME. Its usage with SIP is described fully in RFC 3261. It provides 
an end-to-end authentication mechanism that can be used for a PA to establish the identity of the subscriber.

4.4.6.6.2  Authorization
Once authenticated, the PA makes an authorization decision. A PA must not accept a subscription unless au-
thorization has been provided by the presentity. The means by which authorization are provided are outside 
the scope of this RFC. Authorization may have been provided ahead of time through access lists, perhaps 
specifi ed in a web page. Authorization may have been provided by means of uploading of some kind of stan-
dardized access control list document. Back-end authorization servers, such as a  DIAMETER (RFC 3588) 
server, can also be used. It is also useful to be able to query the user for authorization following the receipt 
of a subscription request for which no authorization information has been provided. The “watcherinfo” event 
template package for SIP defi nes a means by which a presentity can become aware that a user has attempted 
to subscribe to it so that it can then provide an authorization decision.

Authorization decisions can be very complex. Ultimately, all authorization decisions can be mapped into one 
of three states: rejected, successful, and pending. Any subscription for which the client is authorized to receive 
information about some subset of presence state at some points in time is a successful subscription. Any 
subscription for which the client will never receive any information about any subset of the presence state is 
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a rejected subscription. Any subscription for which it is not yet known whether it is successful or rejected is 
pending. Generally, a pending subscription occurs when the server cannot obtain authorization at the time of 
the subscription, but may be able to do so at a later time, perhaps when the presentity becomes available.

The appropriate response codes for conveying a successful, rejected, or pending subscription (200, 403 or 
603, and 202, respectively) are described in RFC 3265.

If the resource is not in a meaningful state, RFC 3265 allows the body of the initial NOTIFY to be empty. 
In the case of presence, that NOTIFY may contain a presence document. This RFC would indicate whatever 
presence state the subscriber has been authorized to see; it is interpreted by the subscriber as the current 
presence state of the presentity. For pending subscriptions, the state of the presentity should include some 
kind of textual note that indicates a pending status.

Polite blocking is possible by generating a 200 OK to the subscription even though it has been rejected (or 
marked pending). Of course, an immediate NOTIFY will still be sent. The contents of the presence docu-
ment in such a NOTIFY are at the discretion of the implementor, but should be constructed in such a way as 
to not reveal to the subscriber that their request has actually been blocked. Typically, this is done by indicat-
ing “offl ine” or equivalent status for a single contact address.

4.4.6.7 Notifi er Generation of  NOTIFY Requests
RFC 3265 details the formatting and structure of NOTIFY messages. However, packages are mandated to 
provide detailed information on when to send a NOTIFY, how to compute the state of the resource, how to 
generate neutral or fake state information, and whether state information is complete or partial. This section 
describes those details for the presence event package.

A PA may send a NOTIFY at any time. Typically, it will send one when the state of the presentity changes. 
The NOTIFY request may contain a body indicating the state of the presentity. The times at which the NOTI-
FY is sent for a particular subscriber, and the contents of the body within that notifi cation, are subject to any 
rules specifi ed by the authorization policy that governs the subscription. This protocol in no way limits the 
scope of such policies. As a baseline, a reasonable policy is to generate notifi cations when the state of any of 
the presence tuples changes. These notifi cations would contain the complete and current presence state of the 
presentity as known to the presence agent. Future extensions can be defi ned that allow a subscriber to request 
that the notifi cations contain changes in presence information only, rather than complete state.

In the case of a pending subscription, when fi nal authorization is determined, a NOTIFY can be sent. If the 
result of the authorization decision was success, a NOTIFY should be sent and should contain a presence 
document with the current state of the presentity. If the subscription is rejected, a NOTIFY may be sent. As 
described in RFC 3265, the Subscription-State header fi eld indicates the state of the subscription.

The body of the NOTIFY must be sent using one of the types listed in the Accept header fi eld in the most 
recent SUBSCRIBE request, or using the type “application/pidf+xml” if no Accept header fi eld was present.

The means by which the PA learns the state of the presentity are also outside the scope of this recommenda-
tion. Registrations can provide a component of the presentity state. However, the means by which a PA uses 
registrations to construct a presence document are an implementation choice. If a PUA wishes to explicitly 
inform the presence agent of its presence state, it should explicitly publish the presence document (or its 
piece of it) rather than attempting to manipulate their registrations to achieve the desired result.

For reasons of privacy, it will frequently be necessary to encrypt the contents of the notifi cations. This can be 
accomplished using   S/MIME. The encryption can be performed using the key of the subscriber as identifi ed 
in the From fi eld of the SUBSCRIBE request. Similarly, integrity of the notifi cations is important to sub-
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scribers. As such, the contents of the notifi cations MAY provide authentication and message integrity using 
S/MIME. Since the NOTIFY is generated by the presence server, which may not have access to the key of the 
user represented by the presentity, it will frequently be the case that the NOTIFY is signed by a third party. It 
is recommended that the signature be by an authority over the domain of the presentity. In other words, for a 
user pres:user@example.com, the signator of the NOTIFY should be the authority for example.com.

4.4.6.8 Subscriber Processing of NOTIFY Requests
RFC 3265 leaves it to event packages to describe the process followed by the subscriber upon receipt of a 
NOTIFY request including any logic required to form a coherent resource state.

In RFC 3856, each NOTIFY contains either no presence document or a document representing the complete 
and coherent state of the presentity. Within a dialog, the presence document in the NOTIFY request with the 
highest CSeq header fi eld value is the current one. When no document is present in that NOTIFY, the pres-
ence document present in the NOTIFY with the next highest CSeq value is used. Extensions which specify 
the use of partial state for presentities will need to dictate how coherent state is achieved.

4.4.6.9 Handling of  Forked Requests
RFC 3265requires each package to describe handling of forked SUBSCRIBE requests.

This specifi cation only allows a single dialog to be constructed as a result of emitting an initial SUBSCRIBE 
request. This guarantees that only a single PA is generating notifi cations for a particular subscription to a 
particular presentity. The result of this is that a presentity can have multiple PAs active, but these should be 
homogeneous, so that each can generate the same set of notifi cations for the presentity. Supporting heteroge-
neous PAs, each of which generates notifi cations for a subset of the presence data, is complex and diffi cult to 
manage. Doing so would require the subscriber to act as the aggregator for presence data. This aggregation 
function can only reasonably be performed by agents representing the presentity. Therefore, if aggregation is 
needed, it must be done in a PA representing the presentity.

Section 4.4.9 of RFC 3265 describes the processing that is required to guarantee the creation of a single 
dialog in response to a SUBSCRIBE request.

4.4.6.10 Rate of Notifi cations
RFC 3265 requires each package to specify the maximum rate at which notifi cations can be sent.

A PA should not generate notifi cations for a single presentity at a rate of more than once every fi ve seconds.

4.4.6.11  State Agents
RFC 3265 requires each package to consider the role of state agents in the package, and if they are used, to 
specify how authentication and authorization are done.

State agents are core to this package. Whenever the PA is not co-located with the PUA for the presentity, 
the PA is acting as a state agent. It collects presence state from the PUA, and aggregates it into a presence 
document. Because there can be multiple PUAs, a centralized state agent is needed to perform this aggrega-
tion. That is why state agents are fundamental to presence. Indeed, they have a specifi c term that describes 
them—a presence server.

4.4.6.11.1  Aggregation, Authentication, and Authorization
The means by which aggregation is done in the state agent is purely a matter of policy. The policy will 
typically combine the desires of the presentity along with the desires of the provider. This RFC in no way 
restricts the set of policies which may be applied.
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However, there is clearly a need for the state agent to have access to the state of the presentity. This state 
is manipulated by the PUA. One way in which the state agent can obtain this state is to subscribe to it. As 
a result, if there were fi ve PUA manipulating presence state for a single presentity, the state agent would 
generate fi ve subscriptions, one to each PUA. For this mechanism to be effective, all PUA should be capable 
of acting as a PA for the state that they manipulate, and that they authorize subscriptions that can be authen-
ticated as coming from the domain of the presentity.

The usage of state agents does not signifi cantly alter the way in which authentication is done by the PA. 
Any of the SIP authentication mechanisms can be used by a state agent. However, digest authentication will 
require the state agent to be aware of the shared secret between the presentity and the subscriber. This will 
require some means to securely transfer the shared secrets from the presentity to the state agent.

The usage of state agents does, however, have a signifi cant impact on authorization. As stated in Section 
4.4.6.6, a PA is required to authorize all subscriptions. If no explicit authorization policy has been defi ned, 
the PA will need to query the user for authorization. In a presence edge server (where the PA is co-located 
with the PUA), this is trivially accomplished. However, when state agents are used (i.e., a presence server), a 
means is needed to alert the user that an authorization decision is required. This is the reason for the watch-
erinfo event template-package. All state agents should support the watcherinfo template-package.

4.4.6.11.2  Migration
On occasion, it makes sense for the PA function to migrate from one server to another. For example—for 
reasons of scale—the PA function may reside in the presence server when the PUA is not running, but when 
the PUA connects to the network, the PA migrates subscriptions to it in order to reduce state in the network. 
The mechanism for accomplishing the migration is described in Section 3.3.5 of RFC 3265. However, pack-
ages need to defi ne under what conditions such a migration would take place.

A PA may choose to migrate subscriptions at any time, through confi guration, or through dynamic means. 
The REGISTER request provides one dynamic means for a presence server to discover that the function 
can migrate to a PUA. Specifi cally, if a PUA wishes to indicate support for the PA function, it should use 
the callee capabilities specifi cation [9] to indicate that it supports the SUBSCRIBE request method and the 
presence event package. The combination of these two defi ne a PA. Of course, a presence server can always 
attempt a migration without these explicit hints. If it fails with either a 405 or 489 response code, the server 
knows that the PUA does not support the PA function. In this case, the server itself will need to act as a PA 
for that subscription request. Once such a failure has occurred, the server should not attempt further migra-
tions to that PUA for the duration of its registration. However, to avoid the extra traffi c generated by these 
failed requests, a presence server should support the callee capabilities extension.

Furthermore, indication of support for the SUBSCRIBE request and the presence event package is not suf-
fi cient for migration of subscriptions. A PA should not migrate the subscription if it is composing aggregated 
presence documents received from multiple PUA.

4.4.7 Learning Presence State
Presence information can be obtained by the PA in many ways. No specifi c mechanism is mandated by this 
specifi cation. This section overviews some of the options, for informational purposes only.

4.4.7.1  Co-location
When the PA function is co-located with the PUA, presence is known directly by the PA.
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4.4.7.2  REGISTER
A UA uses the SIP REGISTER method to inform the SIP network of its current communications addresses 
(i.e., Contact addresses). Multiple UA can independently register Contact addresses for the same address-
of-record. This registration state represents an important piece of the overall presence information for a 
presentity. It is an indication of basic reachability for communications.

Usage of REGISTER information to construct presence is only possible if the PA has access to the registra-
tion database, and can be informed of changes to that database. One way to accomplish that is to co-locate 
the PA with the registrar. 

The means by which registration state is converted into presence state is a matter of local policy and beyond 
the scope of this specifi cation. However, some general guidelines can be provided. The address-of-record 
in the registration (the To header fi eld) identifi es the presentity. Each registered Contact header fi eld identi-
fi es a point of communications for that presentity, which can be modeled using a tuple. Note that the contact 
address in the tuple need not be the same as the registered contact address. Using an address-of-record 
instead allows subsequent communications from a watcher to pass through proxies. This is useful for policy 
processing on behalf of the presentity and the provider. 

A PUA that uses registrations to manipulate presence state should make use of the SIP callee capabilities 
extension. This allows the PUA to provide the PA with richer information about itself. For example, the 
presence of the methods parameter listing the method “MESSAGE” indicates support for instant messaging.

The q values from the Contact header fi eld can be used to establish relative priorities amongst the various 
communications addresses in the Contact header fi elds.

The usage of registrations to obtain presence information increases the requirements for authenticity and in-
tegrity of registrations. Therefore, REGISTER requests used by presence user agents must be authenticated.

4.4.7.3 Uploading  Presence Documents
If a means exists to upload presence documents from PUA to the PA, the PA can act as an aggregator and re-
distributor of those documents. The PA, in this case, would take the presence documents received from each 
PUA for the same presentity, and merge the tuples across all of those PUA into a single presence document. 
Typically, this aggregation would be accomplished through administrator or user-defi ned policies about how 
the aggregation should be done.

The specifi c means by which a presence document is uploaded to a presence agent are outside the scope 
of this specifi cation. When a PUA wishes to have direct manipulation of the presence that is distributed to 
subscribers, direct uploading of presence documents is recommended.

4.4.8 Example Message Flow
The message fl ow of Figure 4.8 illustrates how the presence server can be responsible for sending notifi ca-
tions for a presentity. This fl ow assumes that the watcher has previously been authorized to subscribe to 
this resource at the server. In this fl ow, the PUA informs the server about the updated presence information 
through some non-SIP means. When the value of the Content-Length header fi eld is “...” this means that the 
value should be whatever the computed length of the body is.

Minoli_Book.indb   190Minoli_Book.indb   190 3/9/2006   6:30:29 PM3/9/2006   6:30:29 PM



Basic “Presence” Concepts 

191

F1 Subscribe

F2 200 OK

F4 200 OK

F6 200 OK

F3 Notify

F5 Notify

Update Presence

ServerWatcher PUA

Figure 4.8: Message fl ow example.

Message Details

   F1 SUBSCRIBE   watcher->example.com server

      SUBSCRIBE sip:resource@example.com SIP/2.0

      Via: SIP/2.0/TCP watcherhost.example.com;branch=z9hG4bKnashds7

      To: <sip:resource@example.com>

      From: <sip:user@example.com>;tag=xfg9

      Call-ID: 2010@watcherhost.example.com

      CSeq: 17766 SUBSCRIBE

      Max-Forwards: 70

      Event: presence

      Accept: application/pidf+xml

      Contact: <sip:user@watcherhost.example.com>

      Expires: 600

      Content-Length: 0

4.5 Conclusion
This chapter widened the discussion of pure VoIP to include an assessment of presence capabilities. Currently 
there are an estimated 3x106 IP phones in the world compared with an estimated 3x109 landline and 2G/2.5G 
cellular phones; it follows that so far the penetration of VoIP is 0.1%. In order to make rapid penetration and 
achieve market share (beyond the hype stage), new services are needed. Presence-related services represent 
one possible such service. Ubiquitous computing (“wearable computers”), may be another application (such 
application also would make use of presence concepts); hence, our coverage of this topic.
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C H A P T E R  5
Issues with Current VoIP Technologies

This chapter examines some of the issues that are faced by VoIP systems, particularly systems that would 
be used by carriers for true end-to-end anytime-anyplace connectivity, comparable to what one enjoys today 
with traditional PSTN voice telephony. We only focus on issues and opportunities that can be addressed by 
IPv6, namely scalability and end-to-end robustness. The fl ow mechanism of IPv6 can be employed to man-
age QoS-specifi c paths which is critical to VoIP support—the value of fl ows is already highlighted in MPLS 
and the deployment/applications it is already experiencing at this time. (To be fair, it should be noted that 
not all issues faced by VoIP are addressed by IPv6—it is not a complete panacea. Examples here include: 
general security concerns; equipment interworking; carrier interworking; VoWi-Fi to cellular and/or 3G 
interworking; and, straightforward and reliable Unifi ed Messaging deployments). 

In the sections that follow we fi rst briefl y introduce the issue of security (Section 5.1); then we look at the 
NAT issue (Section 5.2). As a potential solution to some of the  NAT problems, we then look in Section 5.3 
at  Simple Traversal of User Datagram Protocol Through Network Address Translators (STUN). STUN is 
a lightweight protocol that allows applications to discover the presence and types of NATs and fi rewalls 
between them and the public Internet. It also provides the ability for applications to determine the public 
IPv4 addresses allocated to them by the NAT. STUN works with many existing NATs and does not require 
any special behavior from them. As a result, it allows a variety of applications to work through existing NAT 
infrastructure [ROS200301] (however, up to now STUN has not experienced major acceptance/deployment). In 
Section 5.4 we look at  Middlebox Communication (MIDCOM) as a possible other approach to dealing with 
the issues at hand. Finally, we look at some pragmatic short-term approaches, as embodied in the  Session 
Border Controller (SBC) technology (Section 5.5). None of these solutions are optimal in all factors, hence, 
the utility of IPv6-based solutions.

5.1 General Enterprise Security Issues
Network and host security continue to be major concerns for enterprise-, institutional-, and service-provider 
environments. Well-documented recent studies show that cyber attacks continue to remain a substantial 
threat to organizations of all types. On average, companies experience several dozen attacks per week on 
their Information Technology resources. About 20% of large companies suffer at least two severe events 
a year. The challenge to corporate planners just continues to get more onerous. It has been conservatively 
forecasted that in 2010, around 100,000 new vulnerabilities will be discovered in software applications in 
that year alone; this will force companies to assess and mitigate one new risk every few minutes of every 
hour each day. 

Considering that each vulnerability instance has the potential to disrupt or bring a company’s business to 
a complete halt, organizations must take risk assessment seriously and determine how each risk will be 
handled. The increased number of vulnerabilities being discovered also drives up the number of security in-
cidents worldwide and it will increase to a point where 8,000 incidents a week will affect organizations that 
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have not properly addressed and mitigated their risks. It is estimated that the worldwide fi nancial impact of 
malicious code is around $100 B year. Beyond the original venue of proving technical bravado, in the recent 
past attacks have been aimed at stealing customer data, obtaining proprietary information, and deliberately 
hampering a corporation’s ability to do business [POL200401].

If a company loses its information technology (computer and/or voice/data networking) resources for more 
than a day or two, the company may well fi nd itself in fi nancial trouble. Obviously brokerage fi rms, banks, 
airports, medical establishments, and homeland security concerns would be impacted faster than, say, a man-
ufacturing fi rm or a book publishing fi rm. However, the general concern is universal. If a company is unable 
to conduct business for more than a week, the company may well be permanently incapacitated. Therefore, 
there is a clear need to protect the enterprises from random, negligent, malicious, or planned attacks on its 
Information Technology resources. As more and more companies send their IT business abroad under the 
rubric of “outsourcing,” the potential IT (and, hence, corporate) risks are arguably growing at a geometric 
pace; these risks can have ultimate negative implications, particularly in view of cumulative exposures to 
risks which, in the aggregate, take on nontrivial probability. 

Many companies are (now) shifting to a highly mobile work force. To support this mobility fi rms are 
upgrading their network architectures to support remote workforces. Mobile users need access to centrally 
located applications and data over the Internet; voice is also an issue. This, once again, raises the issue of 
security.

5.1.1 Typical Enterprise Network Approaches
Firewalls are a basic mechanism to support perimeter security, even if by themselves they tend to be 
inadequate. See Figure 5.1 for a typical environment. Firewalls provide a method of guarding a private 
network by analyzing the data leaving and entering the intranet. Typically they are implemented as a 
network appliance (dedicated/standalone hardware), although it can also be a just a software program 
(for example, for a PC client). [CSO200501]. The majority of packet-inspection fi rewalls are designed 
to secure and apply policy to the transport level. Firewalls range in functionality from basic protocol/
port inspection, to stateful session-oriented packet inspection, to sophisticated application-layer proxy 
fi rewalls. A typical fi rewall may support the following functions: packet fi ltering, object grouping, 
proxy services,  URL fi ltering,  stateful inspection, and  inline authentication (with or without access to a 
 RADIUS (remote access dial-in user service) server. Firewalls can also provide network address trans-
lation, so the actual IP addresses of devices inside the fi rewall stay hidden from public view; but this is 
precisely one of the issues of concern for end-to-end connectivity.
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Figure 5.1: Typical fi rewall environment.

Most companies implement security in layers. The layering can be in terms of domains or in terms of assets 
categories. It is not effective to rely on a single point-of-protection when addressing the panoply of threats 
that can impact an IT environment; robust information security requires a multilayered approach.

Companies typically see the environment as being comprised of the following zones (also known as do-
mains). (See Figure 5.2, which depicts both a logical view and an example of a physical view):

 Externally-Controlled Zone (ECZ) (such as a particular extranet or 3rd-party environment with an 
established business relationship):  Here the physical access, the IT administration, and the security 
authority are controlled by a third party.

 Uncontrolled Zone (UZ) (such as the Internet and also carrier networks):  No established business rela-
tionship exists where the fi rm can assess the security of the environment. Here the physical access, 
the IT administration, and the security authority are basically unknown.

 Controlled Zone (CZ):  Network point (zone) where all inbound and outbound communications are 
mediated (such as the fi rewall complex). Here the physical access, the IT administration, and the 
security authority are controlled by the fi rm in question. This domain separates the ECZ and UZ 
from the Restricted Zone (typically the intranet) of the fi rm.

 Restricted Zone (RZ):  Here the physical access, the IT administration, and the security authority are con-
trolled by the fi rm in question. Access is granted only to authorized/authenticated users or systems.

 Secure(d) Zone (SZ):  Network location (zone) that provides isolation from the RZ. This zone may con-
tain more critical assets such as the fi rm’s data warehouse, the Directory, or specialized applications 
(such as fi nancials, payroll, etc.). Here the physical access, the IT administration, and the security 
authority are controlled by the fi rm in question.
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Figure 5.2:  Layered security apparatus for typical enterprise environment.

It is also useful to look at layers from an asset category perspective. One example of this is Microsoft’s 
 Defense-in-Depth Model, as shown for illustrative purposes in Figure 5.3 [MIC200501]. 

Physical 

Network 

Host 

Application 

Data 

Figure 5.3: Asset category layering per  Microsoft’s Defense-in-Depth Model.

A very basic fi rewall glossary as included in Table 5.1 (for a more extensive glossary the reader may refer to 
[MIN200601]).
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Most corporations today address security with a number of technical solutions ranging from login/pass-
word, hardware tokens, and RADIUS servers for authentication to Virtual Private Networks (VPNs) for data 
encryption; hardware (appliance) fi rewalls at corporate locations for data packet fi ltering; antivirus software 
on remote PCs; and encrypted storage (e.g., per the new IEEE standard P1619) [POL200401]. Hardware fi re-
walls (routers and/or appliances), generally protect the corporate network from external attacks but cannot 
provide protection against attacks originating from within the corporate network (as noted above, however, 
the Secure Zone (Domain) is delimited by fi rewalls that are inside of the corporate intranet itself). As noted, 
increasingly enterprises make use of a “layered” security approach. While authentication mechanisms ensure 
user/machine authorization and VPNs ensure data privacy in transit, the conventional security tools (e.g., 
hardware fi rewalls and antivirus software) cannot fully protect the environment. Malicious code, such as 
“spyware” can use peer-to-peer fi le sharing, instant messaging, and fi le downloading as a vehicle and enter 
the corporate network to create damage or hog network bandwidth. These are the reasons why XML fi re-
walls (which inspect deep into the transmitted text) can be useful [POL200401]. 

TCP/IP-based networking uses the TCP-Port apparatus to identify the protocol and/or applications with which 
a given TCP session should be associated. Firewall technology is very much dependent on this arrangement 
for proper functioning (other/supplementary techniques such as specifying an IP address or IP address range 
are also utilized).  Two general observations are useful:

Applications using TCP are easier to manage through a fi rewall than applications using UDP;
Protocols/applications that have a smaller range of allowed ports are easier to manage through a 
fi rewall than applications using a larger range—those using a single port are the easiest of all.

As it can be seen in Table 5.1, RTP and H.323 have some wire ranges making VoIP based on these protocols 
something of a challenge (the RTP issue is the same whether one uses SIP or H.323).

In the context of “layered” security, it should be mentioned that many organizations end up using the mecha-
nism of NAT as part of the “toolkit” of available techniques by providing what some call security through 
obscurity. This entails keeping outside entities “unaware” of what the address of internal devices (servers, 
etc.) is, so that these entities cannot then launch a direct attack against said devices (for example, via a TEL-
NET or a specifi cally-targeted fl ow of PDUs and-the-like). Clearly,  NAT is a means-to-an-end; hence, if every 
device has a globally-unique address as in IPv6, then other methods will have to be put in place to provide a  
layer of security comparable to that provided by the previous state of “obscurity.”

Figure 5.4 [ISL200501] depicts today’s security environment as compared to what is possible/desirable in an 
IPv6 future state. The new (NAT-free) security mechanisms facilitate end-to-end connectivity, mobility, and 
collaboration, under a VoIP and/or 3G wireless environment in the coming years. Today’s environment is 
very different, as discussed in the section that follows.

Network-based 
Security 

End-to-end 
Security 

Figure 5.4: End-to-end security environment in IPv6.

•
•
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Table 5.1: Basic security glossary.

 Demilitarized 
Zone (DMZ)

(We prefer the expansion “demarcation zone.”) An area of an intranet that is a barrier, or a buffer, 
between a company’s internal network and resources connected to the network, and the outside public 
network. That portion of the intranet-to-extranet or intranet-to-Internet interface apparatus that supports 
a highly constrained access environment. An area between the hostile Internet and protected services; may 
be implemented as a Layer 2 switch that support a number of Ethernet-attached devices “sandwiched” 
between a front-end and a back-end fi rewall. The purpose of the DMZ is to prevent external users from 
getting direct access to a server or other corporate IT resources. A DMZ is usually comprised of routers, 
packet fi lters, fi rewalls, proxies, and/or mediation devices.

A neutral zone, or buffer, that separates the internal and external networks. The DMZ usually exists 
between two fi rewalls. External users can access servers in the DMZ, but not the computers on the 
internal network. The servers in the DMZ act as an intermediary for both incoming and outgoing traffi c 
[BRA200501].

The DMZ designates the area of protection that lies between the corporate computing environment and 
the Internet or publicly-accessible network. The DMZ is typically where the fi rewalls, gateways, application 
proxies, and other protective computing devices are connected, and employs protective software such as 
fi ltering and intrusion detection applications. 

 Filter Packet matching information that identifi es a set of packets to be treated a certain way by a middlebox 
(security mediation device). A set of terms and/or criteria used for the purpose of separating or 
categorizing. This is accomplished via single- or multifi eld matching of traffi c header and/or payload data. 
5-Tuple specifi cation of packets in the case of a fi rewall and 5-tuple specifi cation of a session in the case of 
a NAT middlebox function are examples of a fi lter [SRI200201].

 Firewall A method of guarding a private network by analyzing the data leaving and entering. Typically implemented 
as a network appliance (dedicated/standalone hardware), although it can also be a just a software 
program (for example for a PC client.) [CSO200501]. The majority of packet-inspection fi rewalls are designed 
to secure and apply policy to the transport level. Firewalls range in functionality from basic protocol/port 
fi ltering devices to stateful session-level packet-inspection systems and sophisticated application-layer 
proxy fi rewalls. Firewalls can also provide network address translation, so the actual IP addresses of devices 
inside the fi rewall stay hidden from public view. 

A policy-based packet fi ltering middlebox function, typically used for restricting access to/from specifi c 
devices and applications. The policies are often termed Access Control Lists (ACLs) [SRI200201].

Includes four basic types: (1) Application-layer gateway; (2) Stateful-inspection fi rewall at the Session 
Layer; (3) Circuit-level gateway at the Network Layer; and (4) Packet-fi ltering fi rewall. Firewalls form the 
fundamental gateway that controls (at different layers of the OSI protocol stack) traffi c entering and 
leaving the network, and all security issues of this type (such as Denial of Service attacks) come under this 
heading [LIG200501].

Packet-fi ltering fi rewalls use rules based on basic information, such as a packet’s source, destination, or 
port, to determine whether or not to allow it into the network. More advanced stateful packet-fi ltering 
fi rewalls have access to more information from which to make their decisions. Stateful fi rewalls examine 
related inbound-outbound traffi c for expected/predicted patterns.)

Proxy fi rewalls that look at content and can involve authentication and encryption can be more fl exible 
and secure but also tend to be slower. Although fi rewalls require confi guration expertise they are a critical 
component of network security [INF200501], [CSO200501]. 

 Layer 2 The protocol layer below Layer 3 (that therefore offers the services used by Layer 3). Forwarding, when 
done by the swapping of short fi xed length labels, occurs at layer 2 regardless of whether the label being 
examined is an ATM VPI/VCI, a frame relay DLCI, or a Multiprotocol Label Switching (MPLS) label.

 Layer 2 VPN 
(L2VPN)

(aka L2 VPN) Three types of L2VPNs are currently defi ned [AND200501]: Virtual Private Wire Service (VPWS); 
Virtual Private LAN Service (VPLS); and IP-only LAN-like Service (IPLS).

 Layer 3 The protocol layer at which IP and its associated routing protocols operate.

 Layer 3 Security 
Mechanisms

Encryption mechanisms such as IPsec or Multilayer IPSec (ML-IPsec).
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 Layer 3 VPN 
(L3VPN)

(a.k.a L3 VPN) An L3VPN interconnects sets of hosts and routers based on Layer 3 addresses; see 
[CAL200301].

 Middlebox A middlebox is a network intermediate device (in IETF parlance) that implements one or more of the 
middlebox services. A NAT middlebox is a middlebox implementing NAT service. A fi rewall middlebox is 
a middlebox implementing fi rewall service. Traditional middleboxes embed application intelligence within 
the device to support specifi c application traversal. Proposed middleboxes supporting the Middlebox 
Communications (MIDCOM) protocol, as defi ned in RFC 3303, will be able to externalize application 
intelligence into MIDCOM agents. In reality, some of the middleboxes may continue to embed application 
intelligence for certain applications and depend on MIDCOM protocol and MIDCOM agents for the 
support of remaining applications [SRI200201].

 Proxy An intermediary program (system) that acts both as a server and as a client for the purpose of making 
requests on behalf of other clients. Requests are serviced internally or by passing them on, with possible 
translation, to other servers. A software agent that acts on behalf of a user, typical proxies accept a 
connection from a user, make a decision as to whether or not the user or client IP address is permitted to 
use the proxy, perhaps does additional authentication, and then completes a connection on behalf of the 
user to a remote destination [INF200501].

An intermediate relay agent between clients and servers of an application, relaying application messages 
between the two. Proxies use special protocol mechanisms to communicate with proxy clients and relay 
client data to servers and vice versa. A Proxy terminates sessions with both the client and the server, acting 
as server to the end-host client and as client to the end-host server. Applications such as FTP, SIP, and RTSP 
use a control session to establish data sessions. These control and data sessions can take divergent paths. 
While a proxy can intercept both the control and data sessions, it might intercept only the control session. 
This is often the case with real-time streaming applications such as SIP and RTSP [SRI200201].

May include a function that replaces the IP address of a host on the internal (protected) network with its 
own IP address for all traffi c passing through it.

 Proxy Firewall Unlike packet-fi ltering, this type of fi rewall does more than simply block port access. Instead, it acts as 
a proxy server, processing access requests on behalf of the network on which it is located. This protects 
individual computers on the network because they never interact directly with incoming client requests 
[CSO200501].

Firewalls that look at content and can involve authentication and encryption can be more fl exible and 
secure but may require more processing power [INF200501], [CSO200501].

 Proxy Servers Specialized application or server programs that run on a fi rewall host or on a dedicated appliance: 
either a dual-homed host with an interface on the internal network and one on the external network, 
or some other bastion host that has access to the Internet and is accessible from the internal devices. 
These programs take users’ requests for Internet services (such as FTP and Telnet) and forward them, as 
appropriate according to the site’s security policy, to the actual services. The proxies provide replacement 
connections and act as gateways to the services. For this reason, proxies are sometimes known as 
application-level gateways. Proxy services intervene, often transparently, between a user on the inside 
(on the internal network) and a service on the outside (on the Internet). Instead of talking to each other 
directly, each talks to a proxy. Proxies handle all the communication between users and Internet services 
behind the scenes. To the user, a proxy server gives the appearance that the user is dealing directly with 
the real server. To the real server, the proxy server presents the illusion that the real server is dealing directly 
with a user on the proxy host (as opposed to the user’s real host). Proxy servers have two main purposes: 

Improve Performance: Proxy servers can improve performance for groups of users. This is because 
it saves the results of all requests for a certain amount of time. Consider the case where both user X 
and user Y access the World Wide Web through a proxy server. First user X requests a certain Web 
page, say Page 1. Sometime later, user Y requests the same page. Instead of forwarding the request 
to the Web server where Page 1 resides, which can be a time-consuming operation, the proxy server 
simply returns the Page 1 that it already fetched for user X. Since the proxy server is often on the same 
network as the user, this is a much faster operation.

Filter Requests: Proxy servers can also be used to fi lter requests. For example, a company might use a 
proxy server to prevent its employees from accessing a specifi c set of websites. 
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 Proxy Services Proxy services intervene, often transparently, between a user on the inside (on the internal network) and a 
service on the outside (on the Internet). Proxy services are effective only when they are used in conjunction 
with a mechanism that restricts direct communications between the internal and external hosts. Dual-
homed hosts and packet fi ltering are two such mechanisms. If internal hosts are able to communicate 
directly with external hosts, there is no need for users to use proxy services, and so (in general) they will 
not; such bypass, however, is typically not in accordance with an organization’s security policy.

A proxy service requires two components: a proxy server and a proxy client. In this situation, the proxy 
server runs on the dual-homed host. A proxy client is a special version of a normal client program (i.e., 
a Telnet or FTP client) that talks to the proxy server rather than to the “real” server out on the Internet; 
in addition, if users are taught special procedures to follow, normal client programs can often be used 
as proxy clients. The proxy server evaluates requests from the proxy client and decides which to approve 
and which to deny. If a request is approved, the proxy server contacts the real server on behalf of the 
client (thus the term “proxy”), and proceeds to relay requests from the proxy client to the real server, and 
responses from the real server to the proxy client. In some proxy systems instead of installing custom client 
proxy software, one employs standard software, but set up custom user procedures for using it. A proxy 
service is not a fi rewall architecture; proxy services are used in conjunction with a fi rewall architecture. 

 Proxying Approach that involves mediating a connection at an intermediate point. In this case the TCP connection 
is not between the client and the (application) host, but from the client to the intermediate proxy-server/
gateway. In turn, the proxy will decide (based on some criteria) if/where a companion session to the 
ultimate (application) host needs to be established. Proxy servers can also be used to fi lter requests.

Companies use proxy servers to improve performance (through caching Web pages and graphics), to 
fi lter requests to certain sites, to make sure that only certain users can get to the Internet, or as a way of 
accounting for Web use (logging sites that users visit). Most proxy servers can perform all of these tasks.

 TCP Ports Transport layer end-to-end protocol identifi ers of traffi c being carrier in a network. Ports of interest to VoIP 
include (but are not limited to):

H.323 RAS TCP 1719

H.323 (H.225) TCP 1720 GW → CM, Call Setup

MGCP TCP 2427/2428 GW → CM, Call Setup

RTP UDP 16384–32767 Bearer Channel

SIP TCP 5060

Skinny Client TCP 2000 Call Setup and Control

Skinny GW (Digital) TCP 2002 Call Setup and Control

GW = Gateway; CM = Call Manager (server)

(long lists of well-known ports are published by the IETF)

 XML Firewall A (relatively) new type of fi rewall intended to secure XML messages and Web Services (WS). Traditional 
fi rewalls are not designed to understand/interpret the XML message-level security and they cannot defend 
against new XML message-based attacks. The majority of packet-inspection fi rewalls are designed to 
secure and apply policy to the transport level, therefore they generally do not scan for content in Simple 
Object Access Protocol (SOAP), Universal Description, Discovery and Integration (UDDI), SAML or other 
Web services protocols. The difference between an XML fi rewall and other fi rewalls is that much of 
the features in an XML fi rewall exist at the application layer and within the data payload or content, 
as opposed to the transport and session layer. Many modern XML fi rewalls act like high-performance 
proxies: they can approach wire speed performance by offl oading crytpo and XML validation functions 
to dedicated hardware (features such as message routing, encryption and forwarding are somewhat of a 
commodity). In this role, the XML fi rewall performs security services such as Authentication, Authorization, 
Auditing (AAA) and XML validation at a message level. The features are a separation of message-level 
security from transport-level security (these XML features do not act as transport-level connection security 
such as done in SSL) [WRE200401]. 
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5.1.2 Typical  Enterprise Network VoIP Security/Integration Approaches
This section briefl y describes typical Best-in-Class designs for enterprise VoIP/converged networks. It high-
lights some of the architecture/design issues. This discussion is loosely based on reference [KUI200501]. 

Security issues affecting VoIP networks include, but are not limited to, the following: Toll fraud, packet/call 
eavesdropping, viruses, worms, Denial-of-Services, TCP vulnerabilities, Layer 3 exploits, rogue device in 
the network, man-in-the-middle issues, DHCP spoofi ng, DHCP starvation, and DNS spoofi ng.

A rogue device has access to the voice stream (packets and/or session/call) between the two communicating 
endpoints. Products/programs have appeared (e.g., Voice Over Misconfi gured Internet Telephones (VOMIT)) 
that facilitate such eavesdropping by assembling tcpdumps of conversations into .WAV fi les. A rogue device 
(an unauthorized device that has been able to inject itself into the network) can undertake theft of telephone 
service; rogue voice gateways can cause even more harm.

Countermeasures include all IP-based security mechanisms such as (the relatively weak) VLAN switch/port 
management methods, Layer 3 fi rewalls, proxies, intrusion prevention systems, encryption/tunneling, H.245 
security, certifi cates, authentication/RADIUS/IEEE 802.1 services, physical hardening.

Figure 5.5 depicts a typical corporate VoIP arrangement, somewhat similar to the fi gures included in Chapter 1 
(keep in mind that a carrier arrangement would be quite different). As can be seen from this fi gure, there are 
several places (at least at the fi rewall locations) where the NAT/fi rewall issues can be problematic.

VPIX V

IP WAN 

PSTN 

Internet 

Syslog 

NMS 

Voice 
Network 

DNS/PDC 
CA 

DNS, Opt.DHCP 

VLAN=101 

VLAN=102 

VoIP GW/GK VoIP GW/GK 
VLAN 
=160 

Si Si

VLAN=202 
VLAN=200 

Data Network 

Converged 
Network 

VLAN=101 
Call Manager 

Cluster 

Possibly-hosted 
Call Manager/ 

Softswitch 

Main Corporate Site Wide Area Networks Remote Corporate Site 

Figure 5.5: A typical  corporate VoIP arrangement.

VoIP security is built in layers, as was the case for the more general intranet discussion earlier in the chapter. 
Note the fi rewall arrangement facing the IP WAN as well as facing the call manager/softswitch cluster (which can 
be co-located or can be at a hosted network/ASP-resident site). Again, these are impacted by NAT.
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Security related to the call manager/softswitch cluster centers on hardened Operating System (OS) (such as 
Linux and/or a high-quality maintenance process on other less reliable OSs), IPSec tunneling (for remote/
hosted arrangements), and Host-based Intrusion Prevention system. IPSec in also affected by NAT.

Security related to the fi rewall connecting to the call control manager deals with Access Control Lists, con-
trol of source addresses, and proper fi ltering (e.g., to allow only call control, directory/LDAP functions, and 
network management).  NAT impacts the overall setup.

Connection to the outside world (Internet) is handled over a Layer 3 VPN mechanism. Network Intrusion 
Detection Systems/Network Protection Systems are typically used.

Endpoints (clients) use separate voice and data VLANs (in support of the already mentioned relatively weak 
VLAN switch/port management mechanism), authentication, and encryption (especially if over a wireless 
LAN or VPN, here for a softphone.)  Endpoint encryption, particularly for VoWi-Fi, is still evolving in terms 
of broad vendor support.

The campus network typically makes use of the normal Layer 3/Application Layer fi rewalls, and IP fi lters 
between voice and data. NAT use should be minimized.

Most deployments today make use a distinct VLAN for voice and a VLAN for data traffi c, as already 
mentioned and further depicted in Figure 5.6. This is done for administrative, QoS, and pseudo-security23  
considerations (the voice VLAN is called an auxiliary VLAN). However, fi rms want to use the same access, 
core, and distribution layers for the two segments in order to be able to make the claim and gain the opera-
tional and fi nancial advantage of a converged network (see Figure 5.7.)  This is supported by mechanisms 
such as Layer 3 access control and stateful fi rewalls (fi rewalls that examine related inbound-outbound traffi c 
for expected/predicted patterns.)

User System 
with Softphone

User Systems E-Mail 
Server 

Voice-Mail 
Server 

Business-Support 
Servers 

Proxy Server 
Voice 

Gateway 
Call-Processing 

Manager 

10.100.200.10 

10.100.200.11 

10.100.200.12 

10.100.200.13 

10.100.200.14 

10.100.200.15 

Voice VLAN 100 Data VLAN 200

172.16.17.21 

172.16.17.18 172.16.17.19 

172.16.17.22 

172.16.17.20 

Figure 5.6: Use of two  VLANs—typical 2G VoIP arrangement.

23 Pseudo-security is a term we use to describe an environment or technology with a weak (and/or false sense of) protection.
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Si
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Figure 5.7:  Converged intranet.

IP phones typically support access to both segments (IP phones have a “data port”/Ethernet for the local 
PC to connect—this uses a single Ethernet cable to the desk, often with in-line power.)  Planners need to 
make sure that the phone supports separation of the two segments. However, fi rms should not rely solely on 
VLANs for separation: to support more robust security one needs to make provision for Layer 3 fi ltering 
between the data and voice VLANs.)

A stateful fi rewall between the two VLAN segments is typically used to manage the data/voice VLAN 
interaction. The stateful fi rewall provides dynamic access and mitigation against TCP connection starvation, 
UDP fl ooding, and spoofi ng attacks.

As seen in Figure 5.6 in 2G VoIP one typically makes use of a private address space (RFC 1918) for the 
data and for the voice  VLAN segments. The partitioned addressing facilitates fi ltering and recognition. The 
approach in RFC 1918 does not support routability, but this can be utilized to reduce the likelihood of recon-
naissance scans even if NAT happened to be misconfi gured. Spoof-mitigation fi ltering addresses the identity 
issue (that nodes are who they claim to be) in local segments.

Related to the end-points, blocking PC access to the voice VLAN at the VLAN switch (even if the PC has 
physical access to the network or to the Layer 2 switch) greatly reduces the possibility of eavesdropping 
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attacks (such as those that may be unleashed with VOMIT-like products); techniques also exist to prevent 
man-in-the-middle attacks or traffi c interception. Access Control Lists (ACLs) can be used to prevent directed-
TCP attacks. DHCP snooping stops  DHCP spoofi ng and starvation attacks. Digitally-signed fi rmware and 
confi guration fi les on clients mitigate security liabilities. Certifi cates can be used to prevent rogue call 
managers, gateways, and phone set insertion (particularly in a  VoWi-Fi environment).  Finally, encryption 
prevents interception. Similar techniques can be used to protect the servers that support VoIP, e.g., Call Man-
agers, Gateways, Gatekeepers, etc.

5.1.3   Firewall Issues for VoIP
As noted earlier, fi rewalls are a basic mechanism to support perimeter security; packet-inspection fi rewalls 
are designed to apply policy to the transport level. As discussed, fi rewalls range in functionality from a basic 
stateful packet-inspection engine to sophisticated application-layer proxy fi rewalls; fi rewalls can also pro-
vide network address translation. TCP/IP-based networking uses the TCP/UDP-Port apparatus to identify the 
protocol and/or applications with which a given TCP session should be associated. As we already observed, 
two general observations are useful in a networking context that are also useful in a VoIP context:

Applications using TCP are easier to manage through a fi rewall than applications using UDP;
Protocols/applications that have a smaller range of allowed ports are easier to manage through a 
fi rewall than applications using a larger range—those using a single port are the easiest of all.

Figure 5.8 depicts the protocol stacks of interest to VoIP. As it can be seen in Table 5.1, RTP and H.323 have 
some wide ranges making VoIP based on these protocols something of a challenge (the RTP issue is the 
same whether one uses SIP or H.323.)

Media

RTPRAS SIP

IPv4 and/or IPv6

H.245

H.323

H.323 Version 3 and 4 supports H.245 over UDP/TCP, Q.931 over UDP/TCP, and RAS over UDP.
SIP supports TCP and UDP.

H.225

Q.931 RTCP RTSP

TCP UDP

Audio/Video

Call Control and Signaling 

Figure 5.8:   VoIP protocol stack.

We limit the rest of this discussion to SIP. Some of the  NAT-related issues are highlighted next. As we 
discussed in Chapter 3, the Via fi eld in SIP indicates the path taken by the SIP request under discussion up 
to the present point. This prevents request looping and ensures replies take the same path as the requests, 
which, in principle, assists in fi rewall traversal and other unusual routing situations [HAN199901].

•
•
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According to [HAN199901] (on which the discussion that follow is based) if a SIP proxy server24 forwards a 
SIP request, it must add itself to the beginning of the list of forwarders noted in the Via headers. The Via 
trace ensures that replies can take the same path back, ensuring correct operation through compliant fi re-
walls and avoiding request loops. On the response path, each host must remove its Via, so that routing internal 
information is hidden from the callee and outside networks. A proxy server must check that it does not gener-
ate a request to a host listed in the Via sent-by, via-received, or via-maddr parameters (the maddr parameter 
provides the server address to be contacted for this user, overriding the address supplied in the host fi eld; this 
address is typically a multicast address but could also be the address of a backup server.)

Hence, the client originating the request inserts into the request messages a Via fi eld containing its host 
name or network address and, if not the default port number, the port number at which it wishes to receive 
responses. (Note that this port number can differ from the UDP source port number of the request.) A fully-
qualifi ed domain name is typically used. Each subsequent proxy server that sends the request onwards must 
add its own additional Via fi eld before any existing Via fi elds. A proxy that receives a redirection (3xx) 
response and then searches recursively, must use the same Via headers as on the original proxied request. A 
SIP proxy should check the top-most Via header fi eld to ensure that it contains the sender’s correct network 
address, as seen from that proxy. If the sender’s address is incorrect, the proxy must add an additional “re-
ceived” attribute.

A host behind a network address translator or fi rewall may not be able to insert a network address into the 
Via header that can be reached by the next hop beyond the NAT. Use of the received attribute allows SIP 
requests to traverse NATs that only modify the source IP address. NATs that modify port numbers, called 
 Network Address Port Translators (NAPTs), will not properly pass SIP when transported on UDP, in which 
case an application layer gateway is required25. When run over TCP, SIP stands a better chance of traversing 
NATs, since its behavior, in this case, is similar to HTTP (but of course on different ports).

A proxy sending a request to a multicast address must add the “maddr” parameter to its Via header fi eld, and 
should add the “ttl” parameter. If a server receives a request that contained an “maddr” parameter in the top-
most Via fi eld, it should send the response to the multicast address listed in the “maddr” parameter. If a SIP 
proxy server receives a request which contains its own address in the Via header value, it must respond with 
a 482 (Loop Detected) status code. A proxy server must not forward a request to a multicast group which 
already appears in any of the Via headers. This prevents a malfunctioning proxy server from causing loops. 
Also, it cannot be guaranteed that a proxy server can always detect that the address returned by a location 
service refers to a host listed in the Via list, as a single host may have aliases or several network interfaces.

Normally, every host that sends or forwards a SIP message adds a Via fi eld indicating the path traversed. 
However, it is possible that NATs changes the source address and port of the request (e.g., from net-10 to a 
globally routable address), in which case the Via header fi eld cannot be relied on to route replies. To prevent 
this, a proxy should check the top-most Via header fi eld to ensure that it contains the sender’s correct net-
work address, as seen from that proxy. If the sender’s address is incorrect, the proxy must add a “received” 
parameter to the Via header fi eld inserted by the previous hop. Such a modifi ed Via header fi eld is known as 
a receiver-tagged Via header fi eld. An example is:

 Via: SIP/2.0/UDP erlang.bell-telephone.com:5060
 Via: SIP/2.0/UDP 10.0.0.1:5060;received=199.172.136.3

In this example, the message originated from 10.0.0.1 and traversed a NAT with the external address border.
ieee.org (199.172.136.3) to reach erlang.bell-telephone.com. The latter noticed the mismatch, and added a 

24 Refer to Chapter for defi nition of functionality.
25 An example is a Border Session controller. 
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parameter to the previous hop’s Via header fi eld, containing the address that the packet actually came from. 
(Note that the NAT border.ieee.org is not a SIP server.)

Via header fi elds in responses are processed by a proxy or UAC according to the following rules:

1.  The fi rst Via header fi eld should indicate the proxy or client processing this response. If it does not, 
discard the message. Otherwise, remove this Via fi eld.

2.  If there is no second Via header fi eld, this response is destined for this client. Otherwise, the pro-
cessing depends on whether the Via fi eld contains a “maddr” parameter or is a receiver-tagged fi eld:
a. If the second Via header fi eld contains a “maddr” parameter, send the response to the multicast 

address listed there, using the port indicated in “sent-by,” or port 5060 if none is present. The 
response should be sent using the TTL indicated in the “ttl” parameter, or with a TTL of 1 if 
that parameter is not present. For robustness, responses must be sent to the address indicated in 
the “maddr” parameter even if it is not a multicast address.

b. If the second Via header fi eld does not contain a “maddr” parameter and is a receiver-tagged 
fi eld, send the message to the address in the “received” parameter using the port indicated in 
the “sent-by” value, or using port 5060 if none is present.

c. If neither of the previous cases apply, send the message to the address indicated by the “sent-
by” value in the second Via header fi eld.

This discussion implicitly highlights the private address/NAT issues faced in 2G VoIP systems. Some of 
these issues can be mitigated in certain IPv6 implementations.

5.2 What is  NAT?
We mentioned NAT a number of times. In this section we provide some detailed information on it. Basic 
Network Address Translation or Basic NAT is a method by which IP addresses are mapped from one group 
to another, transparent to end users. Network Address Port Translation, or NAPT is a method by which many 
network addresses and their  TCP/UDP (Transmission Control Protocol/User Datagram Protocol) ports are 
translated into a single network address and its TCP/UDP ports. Together, these two operations, referred to 
as traditional NAT, provide a mechanism to connect a realm with private addresses to an external realm with 
globally unique registered addresses. As discussed, NAT has impact on 2G VoIP systems; hence, the reason 
for our coverage. The NAT operation described in this section is based on IETF RFC 3022 [SRI200101]. Devel-
opers should refer directly to the RFC for any normative guidance.

Note: IPv4 NAT is described in RFC 2663 and RFC 3022, but has also been is extended beyond IPv4 networks 
to include the IPv4-v6 NAT-PT described in RFC 2766. While the IPv4 NAT translates one IPv4 address into 
another IPv4 address to provide routing between private v4 and external V4 address realms, IPv4-v6 NAT-PT 
(RFC 2766) translates an IPv4 address into an IPv6 address, and vice versa, to provide routing between a 
v6 address realm and an external v4 address realm. Unless specifi ed otherwise, NAT is a proxy (middlebox) 
function referring to both IPv4 NAT, as well as IPv4-v6 NAT-PT [SRI200101], [TSI200001], [SRI200201].

5.2.1 Introduction
The need for IP address translation arises when a network’s internal IP addresses cannot be used outside 
the network either for privacy reasons or because they are invalid for use outside the network. Network 
topology outside a local domain can change in many ways. Customers may change providers, company 
backbones may be reorganized, or providers may merge or split. Whenever external topology changes with 
time, address assignment for nodes within the local domain must also change to refl ect the external changes. 
Changes of this type can be hidden from users within the domain by centralizing changes to a single address 
translation router.
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Basic address translation would (in many cases, except as noted in RFC 2663 and section 6 of RFC 3022) 
allow hosts in a private network to transparently access the external network and enable access to selective 
local hosts from the outside. Organizations with a network setup predominantly for internal use, with a need 
for occasional external access, are good candidates for this scheme.

Many Small Offi ce and Home Offi ce (SOHO) users as well as telecommuting employees have multiple 
network nodes in their offi ce running TCP/UDP applications, but have a single IP address assigned to their 
remote access router by their service provider to access remote networks. This community of remote access 
users typically employs NAPT, which permits multiple nodes in a local network to simultaneously access 
remote networks using the single IP address assigned to their router.

There are limitations to using the translation method. It is mandatory that all requests and responses pertain-
ing to a session be routed via the same NAT router. One way to ascertain this would be to have NAT based 
on a border router that is unique to a stub domain, where all IP packets are either originated from the domain 
or destined to the domain. There are other ways to ensure this with multiple NAT devices. For example, a 
private domain could have two distinct exit points to different providers and the session fl ow from the hosts 
in a private network could traverse through whichever NAT device has the best metric for an external host. 
When one of the NAT routers fails, the other could route traffi c for all the connections. There is however a 
caveat with this approach, in that rerouted fl ows could fail at the time of switchover to the new NAT router. 
A way to overcome this potential problem is to have the routers share the same NAT confi guration and ex-
change state information to ensure a fail-safe backup for each other.

Address translation is application-independent and often accompanied by Application Level Gateways 
 (ALGs) to perform payload monitoring and alterations. FTP is the most popular ALG resident on NAT 
devices. Applications requiring ALG intervention must not have their payload encoded, as doing that effec-
tively disables the ALG, unless the ALG has the key to decrypt the payload.

This solution has the disadvantage of taking away the end-to-end signifi cance of an IP address, and making 
up for it with increased state in the network. As a result, end-to-end IP network level security assured by 
IPSec cannot be assumed to end hosts, with a NAT device enroute. The advantage of this approach, however, 
is that it can be installed without changes to hosts or routers.

Defi nition of terms such as “Address Realm,” “Transparent Routing,” “TU Ports,” “ALG,” and others may be 
found in RFC 2663.

5.2.2 Overview of  Traditional NAT
The Address Translation operation presented in this RFC is referred to as “Traditional NAT.” There are other 
variations of NAT that are explored in this RFC. Traditional NAT would allow hosts within a private network, 
in most cases, to transparently access hosts in the external network. In a traditional NAT, sessions are uni-
directional, outbound from the private network. Sessions in the opposite direction may be allowed on an 
exceptional basis using static address maps for pre-selected hosts. Basic NAT and NAPT are two variations of 
traditional NAT, in that translation in Basic NAT is limited to IP addresses alone, whereas translation in NAPT 
is extended to include IP address and Transport identifi er (such as a TCP/UDP port or ICMP query ID).

Unless mentioned otherwise, Address Translation or NAT throughout this section will pertain to traditional 
NAT—namely Basic NAT—as well as NAPT. Only the stub border routers as described in Figure 5.9 may 
be confi gured to perform address translation.
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Stub Router w/NAT 

Stub Border 

Regional Router 
WAN 

LAN 

Figure 5.9: Traditional NAT confi guration.

5.2.2.1 Overview of  Basic NAT
Basic NAT operation is as follows. A stub domain with a set of private network addresses could be enabled 
to communicate with an external network by dynamically mapping the set of private addresses to a set of 
globally valid network addresses. If the number of local nodes is less than or equal to addresses in the global 
set, each local address is guaranteed a global address to map to. Otherwise, nodes allowed to have simul-
taneous access to external network are limited by the number of addresses in global set. Individual local 
addresses may be statically mapped to specifi c global addresses to ensure guaranteed access to the outside 
or to allow access to the local host from external hosts via a fi xed public address. Multiple simultaneous ses-
sions may be initiated from a local node using the same address mapping.

Addresses inside a stub domain are local to that domain and not valid outside the domain. Thus, addresses 
inside a stub domain can be reused by any other stub domain. For instance, a single Class A address could 
be used by many stub domains. At each exit point between a stub domain and backbone, NAT is installed. If 
there is more than one exit point, it is of great importance that each NAT have the same translation table.

For instance, in the example of Figure 5.10, both stubs A and B internally use class A private address block 
10.0.0.0/8 (see RFC 1918). Stub A’s NAT is assigned the class C address block 198.76.29.0/24, and Stub B’s 
NAT is assigned the class C address block 198.76.28.0/24. The class C addresses are globally unique—no 
other NAT boxes can use them.

When stub A host 10.33.96.5 wishes to send a packet to stub B host 10.81.13.22, it uses the globally unique 
address 198.76.28.4 as destination, and sends the packet to its primary router. The stub router has a static 
route for net 198.76.0.0 so the packet is forwarded to the WAN-link. However, NAT translates the source 
address 10.33.96.5 of the IP header to the globally unique 198.76.29.7 before the packet is forwarded. Like-
wise, IP packets on the return path go through similar address translations.
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Stub Router w/NAT Stub Router w/NAT 

Stub A 

{s = 198.76.29.7, 
 d = 198.76.28.4} 

{s = 10.33.96.5, 
 d = 198.76.28.4} 

{s = 198.76.29.7, 
 d = 10.81.13.22} 

10.81.13.22 

{s = 198.76.29.7, 
 d = 198.76.28.4} 

Stub B 

Regional Router 

WAN WAN 

LAN LAN 

10.33.96.5 

Figure 5.10: Basic NAT operation.

Notice that this requires no changes to hosts or routers. For instance, as far as the stub A host is concerned, 
198.76.28.4 is the address used by the host in stub B. The address translations are transparent to end hosts in 
most cases. Of course, this is just a simple example. There are numerous issues to be explored.

5.2.2.2 Overview of   NAPT
Say, an organization has a private IP network and a WAN link to a service provider. The private network’s 
stub router is assigned a globally valid address on the WAN link and the remaining nodes in the organiza-
tion have IP addresses that have only local signifi cance. In such a case, nodes on the private network could 
be allowed simultaneous access to the external network, using the single registered IP address with the aid 
of NAPT. NAPT would allow mapping of tuples of the type (local IP addresses, local TU port number) to 
tuples of the type (registered IP address, assigned TU port number).

This model fi ts the requirements of most    Small Offi ce/Home Offi ce (SOHO) groups to access external 
network using a single service provider assigned IP address. This model could be extended to allow inbound 
access by statically mapping a local node per each service TU port of the registered IP address.

In the example of Figure 5.11, stub A internally uses class A address block 10.0.0.0/8. The stub router’s 
WAN interface is assigned an IP address 138.76.28.4 by the service provider.
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Stub Router w/NAPT 

Stub A 

{s=138.76.29.7, sport = 23, 
 d=138.76.28.4, dport = 1024} 

Service Provider Router 

WAN 

LAN 

10.0.0.1 10.0.0.2 10.0.0.10

{s = 138.76.28.4, sport = 1024,
 d = 138.76.29.7, dport = 23}

{s = 138.76.29.7, sport = 23, 
 d = 10.0.0.10, dport = 3017}

{s = 10.0.0.10, sport = 3017,
 d = 138.76.29.7, dport = 23}

Figure 5.11: Network Address Port Translation (NAPT) operation.

When stub A host 10.0.0.10 sends a telnet packet to host 138.76.29.7, it uses the globally unique address 
138.76.29.7 as destination, and sends the packet to it’s primary router. The stub router has a static route for 
the subnet 138.76.0.0/16 so the packet is forwarded to the WAN-link. However, NAPT translates the tuple 
of source address 10.0.0.10 and source TCP port 3017 in the IP and TCP headers into the globally unique 
138.76.28.4 and a uniquely assigned TCP port, say 1024, before the packet is forwarded. Packets on the re-
turn path go through similar address and TCP port translations for the target IP address and target TCP port. 
Notice that this requires no changes to hosts or routers. The translation is completely transparent.

In this setup, only  TCP/UDP sessions are allowed and must originate from the local network. However, there 
are services such as DNS that demand inbound access. There may be other services for which an organi-
zation wishes to allow inbound session access. It is possible to statically confi gure a well known TU port 
service (RFC 1700) on the stub router to be directed to a specifi c node in the private network.

In addition to TCP/UDP sessions,  ICMP messages, with the exception of REDIRECT message types, may 
also be monitored by a NAPT router. ICMP query type packets are translated in a manner similar to the way 
TCP/UDP packets are translated in that the identifi er fi eld in an ICMP message header will be uniquely 
mapped to a query identifi er of the registered IP address. The identifi er fi eld in ICMP query messages is set 
by Query sender and returned unchanged in a response message from the Query responder. So, the tuple of 
(Local IP address, local ICMP query identifier) is mapped to a tuple of (registered IP 
address, assigned ICMP query Identifier) by the NAPT router to uniquely identify ICMP queries 
of all types from any of the local hosts. Modifi cations to ICMP error messages are discussed in a later sec-
tion as that involves modifi cations to the ICMP payload as well as the IP and ICMP headers.
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In NAPT setup, where the registered IP address is the same as the IP address of the stub router WAN inter-
face, the router has to be sure to make distinction between TCP, UDP, or ICMP query sessions originated 
from itself versus those originated from the nodes on a local network. All inbound sessions (including TCP, 
UDP, and ICMP query sessions) are assumed to be directed to the NAT router as the end node, unless the 
target service port is statically mapped to a different node in the local network.

Sessions other than TCP, UDP and ICMP query type are simply not permitted from local nodes serviced by 
a NAPT router.

5.2.3 Translation Phases of a Session
The translation phases with traditional NAT are the same as those described in RFC 2663. The following 
subsections identify items that are specifi c to traditional NAT.

5.2.3.1  Address Binding
With Basic NAT, a private address is bound to an external address when the fi rst outgoing session is initi-
ated from the private host. Subsequent to that, all other outgoing sessions originating from the same private 
address will use the same address binding for packet translation.

In the case of NAPT, where many private addresses are mapped to a single globally unique address, the 
binding would be from the tuple of (private address, private TU port) to the tuple of (assigned address, 
assigned TU port). As with Basic NAT, this binding is determined when the fi rst outgoing session is initi-
ated by the tuple of (private address, private TU port) on the private host. While not a common practice, it 
is possible to have an application on private host establish multiple simultaneous sessions originating from 
the same tuple of (private address, private TU port). In such a case, a single binding for the tuple of (private 
address, private TU port) may be used for translation of packets pertaining to all sessions originating from 
the same tuple on a host.

5.2.3.2  Address Lookup and Translation
After an address binding or (address, TU port) tuple binding in case of NAPT is established, a soft state may be 
maintained for each of the connections using the binding. Packets belonging to the same session will be subject 
to session lookup for translation purposes. The exact nature of translation is discussed in the follow-on section.

5.2.3.3  Address Unbinding
When the last session based on an address or (address, TU port) tuple binding is terminated, the binding 
itself may be terminated.

5.2.4  Packet Translations
Packets pertaining to NAT-managed sessions undergo translation in either direction. Individual packet trans-
lation issues are covered in detail in the following subsections.

5.2.4.1 IP, TCP, UDP, and ICMP Header Manipulations
In Basic NAT model, the IP header of every packet must be modifi ed. This modifi cation includes IP address 
(source IP address for outbound packets and destination IP address for inbound packets) and the IP checksum.

For TCP and UDP sessions, modifi cations must include update of checksum in the TCP/UDP headers. This 
is because TCP/UDP checksum also covers a pseudo header which contains the source and destination IP 
addresses. As an exception, UDP headers with 0 checksum should not be modifi ed. As for ICMP Query 
packets ([ICMP]), no further changes in ICMP header are required as the checksum in ICMP header does 
not cover IP addresses.
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In a NAPT model, modifi cations to an IP header are similar to that of Basic NAT. For TCP/UDP sessions, 
modifi cations must be extended to include translation of TU port (source TU port for outbound packets and 
destination TU port for inbound packets) in the TCP/UDP header. The ICMP header in ICMP Query packets 
must also be modifi ed to replace the query ID and ICMP header checksum. Private host query ID must be 
translated into assigned ID on the outbound and the exact reverse on the inbound. ICMP header checksum 
must be corrected to account for Query ID translation.

5.2.4.2  Checksum Adjustment
NAT modifi cations are applied on a packet-by-packet basis and can be very compute intensive, as they 
involve one or more checksum modifi cations in addition to simple fi eld translations. Luckily, we have an 
algorithm below, which makes checksum adjustment to IP, TCP, UDP and ICMP headers very simple and 
effi cient. Since all these headers use a one’s complement sum, it is suffi cient to calculate the arithmetic 
difference between the before-translation and after-translation addresses and add this to the checksum. The 
algorithm below is applicable only for even offsets (i.e., optr below must be at an even offset from start of 
header) and even lengths (i.e., olen and nlen below must be even). Sample code (in C) for this is as follows.

   void checksumadjust(unsigned char *chksum, unsigned char *optr,

   int olen, unsigned char *nptr, int nlen)

   /* assuming: unsigned char is 8 bits, long is 32 bits.

     - chksum points to the chksum in the packet

     - optr points to the old data in the packet

     - nptr points to the new data in the packet

   */

   {

     long x, old, new;

     x=chksum[0]*256+chksum[1];

     x=~x & 0xFFFF;

     while (olen)

     {

         old=optr[0]*256+optr[1]; optr+=2;

         x-=old & 0xffff;

         if (x<=0) { x--; x&=0xffff; }

         olen-=2;

     }

     while (nlen)

     {

         new=nptr[0]*256+nptr[1]; nptr+=2;

         x+=new & 0xffff;

         if (x & 0x10000) { x++; x&=0xffff; }

         nlen-=2;

     }

     x=~x & 0xFFFF;

     chksum[0]=x/256; chksum[1]=x & 0xff;

   }
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5.2.4.3  ICMP Error Packet Modifi cations
Changes to ICMP error message will include changes to IP and ICMP headers on the outer layer as well as 
changes to headers of the packet embedded within the ICMP-error message payload.

In order for NAT to be transparent to end-host, the IP address of the IP header embedded within the payload 
of ICMP-Error message must be modifi ed, the checksum fi eld of the embedded IP header must be modifi ed, 
and lastly, the ICMP header checksum must also be modifi ed to refl ect changes to payload.

In a NAPT setup, if the IP message embedded within ICMP happens to be a TCP, UDP, or ICMP Query 
packet, you will also need to modify the appropriate TU port number within the TCP/UDP header or the 
Query Identifi er fi eld in the ICMP Query header.

Lastly, the IP header of the ICMP packet must also be modifi ed.

5.2.4.4  FTP Support
One of the most popular applications, “FTP,” would require an ALG to monitor the control session payload to 
determine the ensuing data session parameters. FTP ALG is an integral part of most NAT implementations.

The FTP ALG requires a special table to correct the TCP sequence and acknowledge numbers with source 
port FTP or destination port FTP. The table entries should have source address, destination address, source 
port, destination port, delta for sequence numbers and a timestamp. New entries are created only when FTP 
PORT commands or PASV responses are seen. The sequence number delta may be increased or decreased 
for every FTP PORT command or PASV response. Sequence numbers are incremented on the outbound and 
acknowledge numbers are decremented on the inbound by this delta.

FTP payload translations are limited to private addresses and their assigned external addresses (encoded as 
individual octets in ASCII) for Basic NAT. For NAPT setup, however, the translations must be extended to 
include the TCP port octets (in ASCII) following the address octets.

5.2.4.5  DNS Support
Considering that sessions in a traditional NAT are predominantly outbound from a private domain, DNS 
ALG may be obviated from use in conjunction with traditional NAT as follows. DNS server(s) internal to 
the private domain maintain mapping of names to IP addresses for internal hosts and possibly some external 
hosts. External DNS servers maintain name mapping for external hosts alone and not for any of the internal 
hosts. If the private network does not have an internal DNS server, all DNS requests may be directed to the 
external DNS server to fi nd address mapping for the external hosts.

5.2.4.6 IP Option Handling
An IP datagram with any of the IP options Record Route, Strict Source Route, or Loose Source Route would 
involve recording or using IP addresses of intermediate routers. A NAT intermediate router may choose 
not to support these options or leave the addresses untranslated while processing the options. The result of 
leaving the addresses untranslated would be that private addresses along the source route are exposed end-
to-end. This should not jeopardize the traversal path of the packet, per se, as each router is supposed to look 
at the next hop router only.

5.2.5 Miscellaneous Issues

5.2.5.1  Partitioning of Local and Global Addresses
For NAT to operate as described in this RFC, it is necessary to partition the IP address space into two 
parts—the private addresses used internal to stub domain and the globally unique addresses. Any given ad-
dress must either be a private address or a global address. There is no overlap.
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The problem with overlap is the following. Say a host in stub A wished to send packets to a host in stub B, 
but the global addresses of stub B overlapped the private addressees of stub A. In this case, the routers in 
stub A would not be able to distinguish the global address of stub B from its own private addresses.

5.2.5.2  Private Address Space Recommendation
RFC 1918 has recommendations on address space allocation for private networks. Internet Assigned 
Numbers Authority (IANA) has three blocks of IP address space, namely 10.0.0.0/8, 172.16.0.0/12, and 
192.168.0.0/16 for private internets. In pre-CIDR notation, the fi rst block is nothing but a single class A 
network number, while the second block is a set of 16 contiguous class B networks, and the third block is a 
set of 256 contiguous class C networks.

An organization that decides to use IP addresses in the address space defi ned above can do so without any 
coordination with IANA or an Internet registry. The address space can thus be used privately by many inde-
pendent organizations at the same time, with NAT operation enabled on their border routers.

5.2.5.3  Routing Across NAT
The router running NAT should not advertise the private networks to the backbone. Only the networks with 
global addresses may be known outside the stub. However, global information that NAT receives from the 
stub border router can be advertised in the stub the usual way.

Typically, the NAT stub router will have a static route confi gured to forward all external traffi c to service 
provider router over WAN link, and the service provider router will have a static route confi gured to forward 
NAT packets (i.e., those whose destination IP address fall within the range of NAT managed global address 
list) to NAT router over WAN link.

5.2.5.4  Switch-Over from Basic NAT to NAPT
In Basic NAT setup, when private network nodes outnumber global addresses available for mapping (say, 
a class B private network mapped to a class C global address block), external network access to some of 
the local nodes is abruptly cut off after the last global address from the address list is used up. This is very 
inconvenient and constraining. Such an incident can be safely avoided by optionally allowing the Basic NAT 
router to switch over to NAPT setup for the last global address in the address list. Doing this will ensure that 
hosts on private network will have continued, uninterrupted access to the external nodes and services for 
most applications. Note, however, it could be confusing if some of the applications that used to work with 
Basic NAT suddenly break due to the switch-over to NAPT.

5.2.6  NAT Limitations
RFC 2663 covers the limitations of all fl avors of NAT, broadly speaking. The following subsections identify 
limitations specifi c to traditional NAT.

5.2.6.1  Privacy and Security
Traditional NAT can be viewed as providing a privacy mechanism since sessions are unidirectional from 
private hosts, and the actual addresses of the private hosts are not visible to external hosts. The same char-
acteristic that enhances privacy potentially makes debugging problems (including security violations) more 
diffi cult. If a host in a private network is abusing the Internet in some way (such as trying to attack another 
machine or even sending large amounts of spam) it is more diffi cult to track the actual source of trouble 
because the IP address of the host is hidden in a NAT router.

Minoli_Book.indb   214Minoli_Book.indb   214 3/9/2006   6:30:38 PM3/9/2006   6:30:38 PM



Issues with Current VoIP Technologies 

215

5.2.6.2   ARP responses to NAT Mapped Global Addresses on a LAN Interface
NAT must be enabled only on border routers of a stub domain. The examples provided in the document to 
illustrate Basic NAT and NAPT have maintained a WAN link for connection to external router (i.e., service 
provider router) from NAT router. However, if the WAN link were to be replaced by a LAN connection and 
if part or all of the global address space used for NAT mapping belongs to the same IP subnet as the LAN 
segment, the NAT router would be expected to provide ARP support for the address range that belongs to the 
same subnet. Responding to ARP requests for the NAT mapped global addresses with its own MAC address 
is a must in such a situation with Basic NAT setup. If the NAT router did not respond to these requests, there 
is no other node in the network that has ownership of these addresses and hence will go unresponded.

This scenario is unlikely with NAPT setup except when the single address used in NAPT mapping is not the 
interface address of the NAT router (as in the case of a switch-over from Basic NAT to NAPT explained in 
5.2.5.4 above, for example).

Using an address range from a directly connected subnet for NAT address mapping would obviate static 
route confi guration on the service provider router.

It is the opinion of the authors that a LAN link to a service provider router is not very common. However, 
vendors may be interested to optionally support proxy ARP just in case.

5.2.6.3  Translation of Outbound TCP/UDP Fragmented Packets in NAPT Setup
Translation of outbound TCP/UDP fragments (i.e., those originating from private hosts) in NAPT setup are 
doomed to fail. This is because only the fi rst fragment contains the TCP/UDP header that would be nec-
essary to associate the packet to a session for translation purposes. Subsequent fragments do not contain 
TCP/UDP port information, but simply carry the same fragmentation identifi er specifi ed in the fi rst frag-
ment. Say, two private hosts originated fragmented TCP/UDP packets to the same destination host. And, 
they happened to use the same fragmentation identifi er. When the target host receives the two unrelated 
datagrams, carrying the same fragmentation ID, and from the same assigned host address, it is unable to 
determine which of the two sessions the datagrams belong to. Consequently, both sessions will be corrupted.

5.3 STUN—Simple Traversal of User Datagram Protocol (UDP) Through 
Network Address Translators (NATs)
 STUN is a lightweight protocol described in RFC 3489 that allows applications to discover the presence and 
types of NATs and fi rewalls between them and the public Internet. It also provides the ability for applica-
tions to determine the public IP addresses allocated to them by the NAT. STUN works with many existing 
NATs and does not require any special behavior from them. As a result, it allows a variety of applications 
to work through existing NAT infrastructure [ROS200301] (however, up to now it has not experienced ma-
jor acceptance/deployment). The STUN operation described in this section is based on IETF RFC 3489 
[ROS200301]. Developers should refer to the original RFP for any normative guidance.

5.3.1 Applicability Statement
It is recognized that STUN is not a cure-all for the problems associated with NAT. It does not enable 
incoming TCP connections through NAT. It allows incoming UDP packets through NAT, but only through 
a subset of existing NAT types. In particular, STUN does not enable incoming UDP packets through 
symmetric NATs, which are common in large enterprises. STUN’s discovery procedures are based on 
assumptions on NAT treatment of UDP; such assumptions may prove invalid down the road as new NAT 
devices are deployed. STUN does not work when it is used to obtain an address to communicate with a 
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peer that happens to be behind the same NAT. STUN does not work when the STUN server is not in a com-
mon shared address realm. 

5.3.2 Introduction
NATs, while providing many benefi ts, also come with many drawbacks. The most troublesome of those 
drawbacks is the fact that they break many existing IP applications, and make it diffi cult to deploy new ones. 
Guidelines have been developed that describe how to build “NAT friendly” protocols, but many protocols 
simply cannot be constructed according to those guidelines. Examples of such protocols include almost all 
peer-to-peer protocols, such as multimedia communications, fi le sharing, and games.

To combat this problem,  Application Layer Gateways (ALGs) have been embedded in NATs. ALGs perform 
the application layer functions required for a particular protocol to traverse a NAT. Typically, this involves 
rewriting application layer messages to contain translated addresses, rather than the ones inserted by the 
sender of the message. ALGs have serious limitations, including scalability, reliability, and speed of deploy-
ing new applications. To resolve these problems, the Middlebox Communications (MIDCOM) protocol has 
been developed (see RFC 3303). MIDCOM allows an application entity, such as an end client or network 
server of some sort (like a  SIP proxy discussed in Chapter 3 in the context of RFC 3261) to control a NAT 
(or fi rewall) in order to obtain NAT bindings and open or close pinholes. In this way, NATs and applications 
can be separated once more, eliminating the need for embedding ALGs in NATs and resolving the limita-
tions imposed by current architectures. MIDCOM is covered in Section 5.4 of this chapter.

Unfortunately,  MIDCOM requires upgrades to existing NATs and fi rewalls in addition to application compo-
nents. Complete upgrades of these NAT and fi rewall products will take a long time, potentially years. This is 
due, in part, to the fact that the deployers of NATs and fi rewalls are not the same people who are deploying 
and using applications. As a result, the incentive to upgrade these devices will be low in many cases. Consid-
er, for example, an airport Internet lounge that provides access with a NAT. A user connecting to the NATed 
network may wish to use a peer-to-peer service, but cannot, because the NAT does not support it. Since the 
administrators of the lounge are not the ones providing the service, they are not motivated to upgrade their 
NAT equipment to support it, using either an ALG or MIDCOM.

Another problem is that the MIDCOM protocol requires that the agent controlling the middleboxes know the 
identity of those middleboxes, and have a relationship with them which permits control. In many confi gura-
tions, this will not be possible. For example, many cable access providers use NAT in front of their entire 
access network. This NAT could be in addition to a residential NAT purchased and operated by the end user. 
The end user will probably not have a control relationship with the NAT in the cable access network, and 
may not even know of its existence. 

Many existing proprietary protocols, such as those for online games and VoIP, have developed “tricks” that 
allow them to operate through NATs without changing those NATs. RFC 3489 is an attempt to take some 
of those ideas, and codify them into an interoperable protocol that can meet the needs of many applications. 
STUN allows entities behind a NAT to fi rst discover the presence of a NAT and the type of NAT, and then 
to learn the address bindings allocated by the NAT. STUN requires no changes to NATs and works with an 
arbitrary number of NATs in tandem between the application entity and the public Internet.

5.3.3 Applicability to VoIP
The primary usage STUN has found is in the area of VoIP, facilitating allocation of addresses for receiving RTP 
traffi c. In that application, the periodic keepalives are provided by the RTP traffi c itself. However, several 
practical problems arise for RTP. First, RTP assumes that RTCP traffi c is on a port one higher than the RTP 
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traffi c. This pairing property cannot be guaranteed through NATs that are not directly controllable. As a result, 
RTCP traffi c may not be properly received. Protocol extensions to SDP have been proposed which mitigate 
this by allowing the client to signal a different port for RTCP. However, there will be interoperability prob-
lems for some time. For VoIP, silence suppression can cause a gap in the transmission of RTP packets. This 
could result in the loss of a binding in the middle of a call, if that silence period exceeds the binding timeout. 
This can be mitigated by sending occasional silence packets to keep the binding alive. However, the result 
is additional brittleness; proper operation depends on the silence suppression algorithm in use, the usage of a 
comfort noise codec, the duration of the silence period, and the binding lifetime in the NAT.

5.3.4 Defi nitions
 STUN Client:  A STUN client (also just referred to as a client) is an entity that generates STUN requests. A 

STUN client can execute on an end system, such as a user’s PC, or can run in a network element, such 
as a conferencing server.

 STUN Server:  A STUN Server (also just referred to as a server) is an entity that receives STUN requests, 
and sends STUN responses. STUN servers are generally attached to the public Internet.

5.3.5 NAT Variations
It has been observed that NAT treatment of UDP varies among implementations. The four treatments ob-
served in implementations are:

 Full Cone: A full cone NAT is one where all requests from the same internal IP address and port are 
mapped to the same external IP address and port. Furthermore, any external host can send a packet 
to the internal host, by sending a packet to the mapped external address.

 Restricted Cone: A restricted cone NAT is one where all requests from the same internal IP address and 
port are mapped to the same external IP address and port. Unlike a full cone NAT, an external host 
(with IP address X) can send a packet to the internal host only if the internal host had previously 
sent a packet to IP address X.

 Port Restricted Cone: A port restricted cone NAT is like a restricted cone NAT, but the restriction in-
cludes port numbers. Specifi cally, an external host can send a packet, with source IP address X and 
source port P, to the internal host only if the internal host had previously sent a packet to IP address 
X and port P.

 Symmetric: A symmetric NAT is one where all requests from the same internal IP address and port, to a 
specifi c destination IP address and port, are mapped to the same external IP address and port. If the 
same host sends a packet with the same source address and port, but to a different destination, a dif-
ferent mapping is used. Furthermore, only the external host that receives a packet can send a UDP 
packet back to the internal host.

Determining the type of NAT is important in many cases. Depending on what the application wants to do, it 
may need to take the particular behavior into account.

5.3.6 Overview of Operation
This section is descriptive only (normative behavior is described in Sections 5.3.8 and 5.3.9.)  The typi-
cal STUN confi guration is shown in Figure 5.12. A STUN client is connected to private network 1. This 
network connects to private network 2 through NAT 1. Private network 2 connects to the public Internet 
through NAT 2. The STUN server resides on the public Internet.
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Figure 5.12: STUN confi guration.

STUN is a simple client-server protocol. A client sends a request to a server, and the server returns a re-
sponse. There are two types of requests—Binding Requests, sent over UDP, and Shared Secret Requests, 
sent over TLS over TCP. Shared Secret Requests ask the server to return a temporary username and pass-
word. This username and password are used in a subsequent Binding Request and Binding Response, for the 
purposes of authentication and message integrity.

Binding requests are used to determine the bindings allocated by NATs. The client sends a Binding Request 
to the server, over UDP. The server examines the source IP address and port of the request, and copies them 
into a response that is sent back to the client. There are some parameters in the request that allow the client 
to ask that the response be sent elsewhere, or that the server send the response from a different address and 
port. There are attributes for providing message integrity and authentication.

The trick is using STUN to discover the presence of NAT, and to learn and use the bindings they allocate.

The  STUN client is typically embedded in an application which needs to obtain a public IP address and port 
that can be used to receive data. For example, it might need to obtain an IP address and port to receive  Real 
Time Transport Protocol (RTP) traffi c. When the application starts, the STUN client within the application 
sends a STUN Shared Secret Request to its server, obtains a username and password, and then sends it a 
Binding Request. STUN servers can be discovered through DNS SRV records, and it is generally assumed 
that the client is confi gured with the domain it needs to use to fi nd the STUN server. Generally, this will 
be the domain of the provider of the service the application is using (such a provider is incented to deploy 
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STUN servers in order to allow its customers to use its application through NAT). Of course, a client can 
determine the address or domain name of a STUN server through other means. A STUN server can even be 
embedded within an end system.

The STUN Binding Request is used to discover the presence of a NAT, and to discover the public IP address 
and port mappings generated by the NAT. Binding Requests are sent to the STUN server using UDP. When 
a Binding Request arrives at the STUN server, it may have passed through one or more NATs between the 
STUN client and the STUN server. As a result, the source address of the request received by the server will 
be the mapped address created by the NAT closest to the server. The STUN server copies that source IP 
address and port into a STUN Binding Response, and sends it back to the source IP address and port of the 
STUN request. For all of the NAT types above, this response will arrive at the STUN client.

When the STUN client receives the STUN Binding Response, it compares the IP address and port in the 
packet with the local IP address and port it bound to when the request was sent. If these do not match, the 
STUN client is behind one or more NATs. In the case of a full-cone NAT, the IP address and port in the body 
of the STUN response are public, and can be used by any host on the public Internet to send packets to the 
application that sent the STUN request. An application need only listen in on the IP address and port from 
which the STUN request was sent. Any packets sent by a host on the public Internet to the public address 
and port learned by STUN will be received by the application.

Of course, the host may not be behind a full-cone NAT. Indeed, it does not yet know what type of NAT it 
is behind. To determine that, the client uses additional STUN Binding Requests. The exact procedure is 
fl exible, but would generally work as follows. The client would send a second STUN Binding Request, this 
time to a different IP address, but from the same source IP address and port. If the IP address and port in the 
response are different from those in the fi rst response, the client knows it is behind a symmetric NAT. To 
determine if it is behind a full-cone NAT, the client can send a STUN Binding Request with fl ags that tell 
the STUN server to send a response from a different IP address and port than the request was received on. 
In other words, if the client sent a Binding Request to IP address/port A/B using a source IP address/port of 
X/Y, the STUN server would send the Binding Response to X/Y using source IP address/port C/D. If the cli-
ent receives this response, it knows it is behind a full cone NAT.

STUN also allows the client to ask the server to send the Binding Response from the same IP address the 
request was received on, but with a different port. This can be used to detect whether the client is behind a 
port restricted cone NAT or just a restricted cone NAT.

It should be noted that the confi guration in Figure 5.12 is not the only permissible confi guration. The STUN 
server can be located anywhere, including within another client. The only requirement is that the STUN 
server is reachable by the client, and if the client is trying to obtain a publicly routable address, that the 
server reside on the public Internet.

5.3.7  Message Overview
STUN messages are TLV (type-length-value) encoded using big endian (network ordered) binary. All STUN 
messages start with a STUN header, followed by a STUN payload. The payload is a series of STUN at-
tributes, the set of which depends on the message type. The STUN header contains a STUN message type, 
transaction ID, and length. The message type can be Binding Request, Binding Response, Binding Error Re-
sponse, Shared Secret Request, Shared Secret Response, or Shared Secret Error Response. The transaction 
ID is used to correlate requests and responses. The length indicates the total length of the STUN payload, 
not including the header. This allows STUN to run over TCP. Shared Secret Requests are always sent over 
TCP (indeed, using TLS over TCP).
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Several STUN attributes are defi ned. The fi rst is a MAPPED-ADDRESS attribute, which is an IP address 
and port. It is always placed in the Binding Response, and it indicates the source IP address and port the 
server saw in the Binding Request. There is also a RESPONSE-ADDRESS attribute, which contains an IP 
address and port. The RESPONSE-ADDRESS attribute can be present in the Binding Request, and indicates 
where the Binding Response is to be sent. It’s optional, and when not present, the Binding Response is sent 
to the source IP address and port of the Binding Request.

The third attribute is the CHANGE-REQUEST attribute, and it contains two fl ags to control the IP address 
and port used to send the response. These fl ags are called change IP and change port fl ags. The CHANGE-
REQUEST attribute is allowed only in the Binding Request. The “change IP” and “change port” fl ags 
are useful for determining whether the client is behind a restricted cone NAT or restricted port cone NAT. 
They instruct the server to send the Binding Responses from a different source IP address and port. The 
CHANGE-REQUEST attribute is optional in the Binding Request.

The fourth attribute is the CHANGED-ADDRESS attribute. It is present in Binding Responses. It informs 
the client of the source IP address and port that would be used if the client requested the “change IP” and 
“change port” behavior.

The fi fth attribute is the SOURCE-ADDRESS attribute. It is only present in Binding Responses. It indicates 
the source IP address and port where the response was sent from. It is useful for detecting twice NAT con-
fi gurations.

The sixth attribute is the USERNAME attribute. It is present in a Shared Secret Response, which provides 
the client with a temporary username and password (encoded in the PASSWORD attribute). The USER-
NAME is also present in Binding Requests, serving as an index to the shared secret used for the integrity 
protection of the Binding Request. The seventh attribute, PASSWORD, is only found in Shared Secret 
Response messages. The eighth attribute is the MESSAGE-INTEGRITY attribute, which contains a message 
integrity check over the Binding Request or Binding Response.

The ninth attribute is the ERROR-CODE attribute. This is present in the Binding Error Response and Shared 
Secret Error Response. It indicates the error that has occurred. The tenth attribute is the UNKNOWN-
ATTRIBUTES attribute which is present in either the Binding Error Response or Shared Secret Error 
Response. It indicates the mandatory attributes from the request which were unknown. The eleventh 
attribute is the REFLECTED-FROM attribute which is present in Binding Responses. It indicates the IP 
address and port of the sender of a Binding Request used for traceability purposes to prevent certain denial-
of-service attacks.

5.3.8 Server Behavior
The server behavior depends on whether the request is a Binding Request or a Shared Secret Request.

5.3.8.1  Binding Requests
A STUN server must be prepared to receive Binding Requests on four address/port combinations—(A1, P1), 
(A2, P1), (A1, P2), and (A2, P2). (A1, P1) represent the primary address and port, and these are the ones 
obtained through the client discovery procedures below. Typically, P1 will be port 3478, the default STUN 
port. A2 and P2 are arbitrary. A2 and P2 are advertised by the server through the CHANGED-ADDRESS 
attribute, as described below.

It is recommended that the server check the Binding Request for a MESSAGE-INTEGRITY attribute. If not 
present, and the server requires integrity checks on the request, it generates a Binding Error Response with 
an ERROR-CODE attribute with response code 401. If the MESSAGE-INTEGRITY attribute was present, 
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the server computes the HMAC over the request as described in Section 5.3.11.2. The key to use depends on 
the shared secret mechanism. If the STUN Shared Secret Request was used, the key must be the one associ-
ated with the USERNAME attribute present in the request. If the USERNAME attribute was not present, 
the server must generate a Binding Error Response. The Binding Error Response must include an ERROR-
CODE attribute with response code 432. If the USERNAME is present, but the server does not remember 
the shared secret for that USERNAME (because it timed out, for example), the server must generate a Bind-
ing Error Response. The Binding Error Response must include an ERROR-CODE attribute with response 
code 430. If the server does know the shared secret, but the computed HMAC differs from the one in the 
request, the server must generate a Binding Error Response with an ERROR-CODE attribute with response 
code 431. The Binding Error Response is sent to the IP address and port the Binding Request came from, 
and sent from the IP address and port the Binding Request was sent to.

Assuming the message integrity check passed, processing continues. The server must check for any attri-
butes in the request with values less than or equal to 0x7fff which it does not understand. If it encounters 
any, the server must generate a Binding Error Response, and it MUST include an ERROR-CODE attribute 
with a 420 response code.

That response must contain an UNKNOWN-ATTRIBUTES attribute listing the attributes with values less 
than or equal to 0x7fff which were not understood. The Binding Error Response is sent to the IP address and 
port the Binding Request came from, and sent from the IP address and port the Binding Request was sent to.

Assuming the request was correctly formed, the server must generate a single Binding Response. The Bind-
ing Response must contain the same transaction ID contained in the Binding Request. The length in the 
message header must contain the total length of the message in bytes, excluding the header. The Binding 
Response must have a message type of “Binding Response.”

The server must add a MAPPED-ADDRESS attribute to the Binding Response. The IP address component 
of this attribute must be set to the source IP address observed in the Binding Request. The port component of 
this attribute must be set to the source port observed in the Binding Request.

If the RESPONSE-ADDRESS attribute was absent from the Binding Request, the destination address and 
port of the Binding Response must be the same as the source address and port of the Binding Request. 
Otherwise, the destination address and port of the Binding Response must be the value of the IP address and 
port in the RESPONSE-ADDRESS attribute.

The source address and port of the  Binding Response depend on the value of the CHANGE-REQUEST 
attribute and on the address and port the Binding Request was received on, and are summarized in Table 5.2.

Let Da represent the destination IP address of the Binding Request (which will be either A1 or A2), and 
Dp represent the destination port of the Binding Request (which will be either P1 or P2). Let Ca represent 
the other address, so that if Da is A1, Ca is A2. If Da is A2, Ca is A1. Similarly, let Cp represent the other 
port, so that if Dp is P1, Cp is P2. If Dp is P2, Cp is P1. If the “change port” fl ag was set in the CHANGE-
REQUEST attribute of the Binding Request, and the “change IP” fl ag was not set, the source IP address of 
the Binding Response must be Da and the source port of the Binding Response must be Cp. If the “change 
IP” fl ag was set in the Binding Request, and the “change port” fl ag was not set, the source IP address of 
the Binding Response must be Ca and the source port of the Binding Response MUST be Dp. When both 
fl ags are set, the source IP address of the Binding Response MUST be Ca and the source port of the Binding 
Response MUST be Cp. If neither fl ag is set, or if the CHANGE-REQUEST attribute is absent entirely, the 
source IP address of the Binding Response MUST be Da and the source port of the Binding Response must 
be Dp.
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Table 5.2: Impact of fl ags on packet source and CHANGED-ADDRESS.

Flags Source Address  Source Port   CHANGED-ADDRESS

none Da Dp Ca:Cp

Change IP Ca Dp Ca:Cp

Change port Da Cp Ca:Cp

Change IP and Change port Ca Cp Ca:Cp

The server must add a SOURCE-ADDRESS attribute to the Binding Response, containing the source ad-
dress and port used to send the Binding Response.

The server must add a CHANGED-ADDRESS attribute to the Binding Response. This contains the source 
IP address and port that would be used if the client had set the “change IP” and “change port” fl ags in the 
Binding Request. As summarized in Table 5.2, these are Ca and Cp, respectively, regardless of the value of 
the CHANGE-REQUEST fl ags.

If the Binding Request contained both the USERNAME and MESSAGE-INTEGRITY attributes, the server 
must add a   MESSAGE-INTEGRITY attribute to the Binding Response. The attribute contains an HMAC 
over the response, as described in Section 5.3.11.2. The key to use depends on the shared secret mechanism. 
If the STUN Shared Secret Request was used, the key must be the one associated with the USERNAME at-
tribute present in the Binding Request.

If the Binding Request contained a RESPONSE-ADDRESS attribute, the server MUST add a REFLECTED-
FROM attribute to the response. If the Binding Request was authenticated using a username obtained from 
a Shared Secret Request, the REFLECTED-FROM attribute MUST contain the source IP address and port 
where that Shared Secret Request came from. If the username present in the request was not allocated using 
a Shared Secret Request, the REFLECTED-FROM attribute must contain the source address and port of the 
entity which obtained the username, as best can be verifi ed with the mechanism used to allocate the user-
name. If the username was not present in the request, and the server was willing to process the request, the 
REFLECTED-FROM attribute should contain the source IP address and port where the request came from.

The server should not retransmit the response. Reliability is achieved by having the client periodically re-
send the request, each of which triggers a response from the server.

5.3.8.2  Shared Secret Requests
Shared Secret Requests are always received on TLS connections. When the server receives a request from 
the client to establish a TLS connection, it must proceed with TLS, and should present a site certifi cate. The 
TLS ciphersuite TLS_RSA_WITH_AES_128_CBC_SHA should be used. Client TLS authentication must 
not be done, since the server is not allocating any resources to clients, and the computational burden can be a 
source of attacks.

If the server receives a Shared Secret Request, it must verify that the request arrived on a TLS connection. If 
it did not receive the request over TLS, it must generate a Shared Secret Error Response, and it must include 
an ERROR-CODE attribute with a 433 response code. The destination for the error response depends on the 
transport on which the request was received. If the Shared Secret Request was received over TCP, the Shared 
Secret Error Response is sent over the same connection the request was received on. If the Shared Secret 
Request was receive over UDP, the Shared Secret Error Response is sent to the source IP address and port 
that the request came from.

The server must check for any attributes in the request with values less than or equal to 0x7fff which it 
does not understand. If it encounters any, the server must generate a Shared Secret Error Response, and it 

Minoli_Book.indb   222Minoli_Book.indb   222 3/9/2006   6:30:39 PM3/9/2006   6:30:39 PM



Issues with Current VoIP Technologies 

223

must include an ERROR-CODE attribute with a 420 response code. That response must contain an UN-
KNOWN-ATTRIBUTES attribute listing the attributes with values less than or equal to 0x7fff which were 
not understood. The Shared Secret Error Response is sent over the TLS connection.

All Shared Secret Error Responses must contain the same transaction ID contained in the Shared Secret 
Request. The length in the message header must contain the total length of the message in bytes, excluding 
the header. The Shared Secret Error Response must have a message type of “Shared Secret Error Response” 
(0x0112).

Assuming the request was properly constructed, the server creates a Shared Secret Response. The Shared 
Secret Response must contain the same transaction ID contained in the Shared Secret Request. The length in 
the message header must contain the total length of the message in bytes, excluding the header. The Shared 
Secret Response must have a message type of “Shared Secret Response.” The Shared Secret Response must 
contain a USERNAME attribute and a  PASSWORD attribute. The USERNAME attribute serves as an index 
to the password, which is contained in the PASSWORD attribute. The server can use any mechanism it 
chooses to generate the username. However, the username must be valid for a period of at least 10 minutes. 
Validity means that the server can compute the password for that username. There MUST be a single pass-
word for each username. In other words, the server cannot, 10 minutes later, assign a different password to 
the same username. The server must hand out a different username for each distinct Shared Secret Request. 
Distinct, in this case, implies a different transaction ID. It is recommended that the server explicitly invalidate 
the username after ten minutes. It must invalidate the username after 30 minutes. The PASSWORD contains 
the password bound to that username. The password must have at least 128 bits. The likelihood that the 
server assigns the same password for two different usernames must be vanishingly small, and the passwords 
must be unguessable. In other words, they must be a cryptographically random function of the username.

These requirements can still be met using a stateless server, by intelligently computing the USERNAME and 
PASSWORD. One approach is to construct the USERNAME as:

      USERNAME = <prefix,rounded-time,clientIP,hmac>

Where prefi x is some random text string (different for each shared secret request), rounded-time is the cur-
rent time modulo 20 minutes, clientIP is the source IP address where the Shared Secret Request came from, 
and hmac is an HMAC over the prefi x, rounded-time, and client IP, using a server private key. The password 
is then computed as:

      password = <hmac(USERNAME,anotherprivatekey)>

With this structure, the username itself, which will be present in the Binding Request, contains the source IP 
address where the Shared Secret Request came from. That allows the server to meet the requirements speci-
fi ed in Section 5.3.8.1 for constructing the REFLECTED-FROM attribute. The server can verify that the 
username was not tampered with, using the hmac present in the username.

The Shared Secret Response is sent over the same TLS connection the request was received on. The server 
should keep the connection open, and let the client close it.

5.3.9 Client Behavior
The behavior of the client is very straightforward. Its task is to discover the STUN server, obtain a shared 
secret, formulate the Binding Request, handle request reliability, and process the Binding Responses.

5.3.9.1  Discovery
Generally, the client will be confi gured with a domain name of the provider of the STUN servers. This 
domain name is resolved to an IP address and port using the SRV procedures specifi ed in RFC 2782.
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Specifi cally, the service name is “stun.” The protocol is “udp” for sending Binding Requests or “tcp” for 
sending Shared Secret Requests. The procedures of RFC 2782 are followed to determine the server to con-
tact. RFC 2782 spells out the details of how a set of SRV records are sorted and then tried. However, it only 
states that the client should “try to connect to the (protocol, address, service)” without giving any details on 
what happens in the event of failure. Those details are described here for STUN.

For STUN requests, failure occurs if there is a transport failure of some sort (generally, due to fatal ICMP 
errors in UDP or connection failures in TCP). Failure also occurs if the transaction fails due to timeout. This 
occurs 9.5 seconds after the fi rst request is sent, for both Shared Secret Requests and Binding Requests. See 
Section 5.3.9.3 for details on transaction timeouts for Binding Requests. If a failure occurs, the client should 
create a new request, which is identical to the previous, but has a different transaction ID and MESSAGE 
INTEGRITY attribute (the HMAC will change because the transaction ID has changed). That request is sent 
to the next element in the list as specifi ed by RFC 2782.

The default port for STUN requests is 3478, for both TCP and UDP. Administrators should use this port in 
their SRV records, but may use others.

If no SRV records were found, the client performs an A record lookup of the domain name. The result will 
be a list of IP addresses, each of which can be contacted at the default port.

This would allow a fi rewall admin to open the STUN port, so hosts within the enterprise could access new 
applications. Whether they will or will not do this is a relevant question.

5.3.9.2  Obtaining a Shared Secret
There are several attacks possible on STUN systems. Many of these are prevented through integrity of 
requests and responses. To provide that integrity, STUN makes use of a shared secret between client and 
server, used as the keying material for an HMAC in both the Binding Request and Binding Response. STUN 
allows for the shared secret to be obtained in any way (for example, Kerberos). However, it must have at 
least 128 bits of randomness. In order to ensure interoperability, this specifi cation describes a TLS-based 
mechanism. This mechanism, described in this section, must be implemented by clients and servers.

First, the client determines the IP address and port that it will open a TCP connection to. This is done using 
the discovery procedures in Section 5.3.9.1. The client opens up the connection to that address and port, and 
immediately begins TLS negotiation. The client must verify the identity of the server. To do that, it follows 
the identifi cation procedures defi ned in Section 3.1 of RFC 2818. Those procedures assume the client is 
dereferencing a URI. For purposes of usage with this specifi cation, the client treats the domain name or IP 
address used in Section 5.3.9.1 as the host portion of the URI that has been dereferenced.

Once the connection is opened, the client sends a Shared Secret request. This request has no attributes, just 
the header. The transaction ID in the header must meet the requirements outlined for the transaction ID in a 
binding request, described in Section 5.3.9.3 below. The server generates a response, which can either be a 
Shared Secret Response or a Shared Secret Error Response.

If the response was a Shared Secret Error Response, the client checks the response code in the ERROR-
CODE attribute. Interpretation of those response codes is identical to the processing of Section 5.3.9.4 for 
the Binding Error Response.

If a client receives a Shared Secret Response with an attribute whose type is greater than 0x7fff, the attribute 
must be ignored. If the client receives a Shared Secret Response with an attribute whose type is less than or 
equal to 0x7fff, the response is ignored.
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If the response was a Shared Secret Response, it will contain a short-lived username and password encoded 
in the USERNAME and PASSWORD attributes, respectively.

The client may generate multiple Shared Secret Requests on the connection, and it may do so before receiv-
ing Shared Secret Responses to previous Shared Secret Requests. The client should close the connection as 
soon as it has fi nished obtaining usernames and passwords.

Section 5.3.9.3 describes how these passwords are used to provide integrity protection over Binding Re-
quests, and Section 5.3.8.1 describes how it is used in Binding Responses.

5.3.9.3  Formulating the Binding Request
A Binding Request formulated by the client follows the syntax rules defi ned in Section 5.3.11. Any two 
requests that are not bit-wise identical, and not sent to the same server from the same IP address and port, 
must carry different transaction IDs. The transaction ID must be uniformly and randomly distributed 
between 0 and 2**128 – 1. The large range is needed because the transaction ID serves as a form of random-
ization, helping to prevent replays of previously signed responses from the server. The message type of the 
request must be “Binding Request.”

The RESPONSE-ADDRESS attribute is optional in the Binding Request. It is used if the client wishes the 
response to be sent to a different IP address and port than the one the request was sent from. This is useful 
for determining whether the client is behind a fi rewall, and for applications that have separated control and 
data components. See Section 5.3.10.3 for more details. The CHANGE-REQUEST attribute is also optional. 
Whether it is present depends on what the application is trying to accomplish. See Section 5.3.10 for some 
example uses.

The client should add MESSAGE-INTEGRITY and USERNAME attributes to the Binding Request. This 
MESSAGE-INTEGRITY attribute contains an HMAC. The value of the username, and the key to use in the 
MESSAGE-INTEGRITY attribute depend on the shared secret mechanism. If the STUN Shared Secret Re-
quest was used, the USERNAME must be a valid username obtained from a Shared Secret Response within 
the last nine minutes. The shared secret for the HMAC is the value of the PASSWORD attribute obtained 
from the same Shared Secret Response.

Once formulated, the client sends the Binding Request. Reliability is accomplished through client retrans-
missions. Clients should retransmit the request starting with an interval of 100ms, doubling every retransmit 
until the interval reaches 1.6s. Retransmissions continue with intervals of 1.6s until a response is received, 
or a total of nine requests have been sent. If no response is received by 1.6 seconds after the last request has 
been sent, the client should consider the transaction to have failed. In other words, requests would be sent at 
times 0ms, 100ms, 300ms, 700ms, 1500ms, 3100ms, 4700ms, 6300ms, and 7900ms. At 9500ms, the client 
considers the transaction to have failed if no response has been received.

5.3.9.4  Processing Binding Responses
The response can either be a Binding Response or Binding Error Response. Binding Error Responses are 
always received on the source address and port the request was sent from. A Binding Response will be 
received on the address and port placed in the RESPONSE-ADDRESS attribute of the request. If none was 
present, the Binding Responses will be received on the source address and port the request was sent from.

If the response is a Binding Error Response, the client checks the response code from the ERROR-CODE 
attribute of the response. For a 400 response code, the client should display the reason phrase to the user. 
For a 420 response code, the client should retry the request, this time omitting any attributes listed in the 
UNKNOWN-ATTRIBUTES attribute of the response. For a 430 response code, the client should obtain a 
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new shared secret, and retry the Binding Request with a new transaction. For 401 and 432 response codes, 
if the client had omitted the USERNAME or MESSAGE-INTEGRITY attribute as indicated by the error, 
it should try again with those attributes. For a 431 response code, the client should alert the user, and may 
try the request again after obtaining a new username and password. For a 500 response code, the client may 
wait several seconds and then retry the request. For a 600 response code, the client must not retry the re-
quest, and should display the reason phrase to the user. Unknown attributes between 400 and 499 are treated 
like a 400, unknown attributes between 500 and 599 are treated like a 500, and unknown attributes between 
600 and 699 are treated like a 600. Any response between 100 and 399 must result in the cessation of request 
retransmissions, but otherwise is discarded.

If a client receives a response with an attribute whose type is greater than 0x7fff, the attribute MUST be 
ignored. If the client receives a response with an attribute whose type is less than or equal to 0x7fff, request 
retransmissions must cease, but the entire response is otherwise ignored. If the response is a Binding Re-
sponse, the client should check the response for a MESSAGE-INTEGRITY attribute. If not present, and the 
client placed a MESSAGE-INTEGRITY attribute into the request, it must discard the response. If present, 
the client computes the HMAC over the response as described in Section 5.3.11.2. The key to use depends 
on the shared secret mechanism. If the STUN Shared Secret Request was used, the key must be the same as 
that used to compute the MESSAGE-INTEGRITY attribute in the request. If the computed HMAC differs 
from the one in the response, the client must discard the response, and should alert the user about a possible 
attack. If the computed HMAC matches the one from the response, processing continues.

Reception of a response (either a Binding Error Response or Binding Response) to a Binding Request will 
terminate retransmissions of that request. However, clients must continue to listen for responses to a Bind-
ing Request for 10 seconds after the fi rst response. If it receives any responses in this interval with different 
message types (Binding Responses and Binding Error Responses, for example) or different MAPPED-AD-
DRESSes, it is an indication of a possible attack. The client must not use the MAPPED-ADDRESS from 
any of the responses it received (either the fi rst or the additional ones), and should alert the user.

Furthermore, if a client receives more than twice as many Binding Responses as the number of Binding 
Requests it sent, it must not use the MAPPED-ADDRESS from any of those responses, and should alert the 
user about a potential attack.

If the Binding Response is authenticated, and the MAPPED-ADDRESS was not discarded because of a 
potential attack, the CLIENT may use the MAPPED-ADDRESS and SOURCE-ADDRESS attributes.

5.3.10  Use Cases
The rules of Sections 8 and 9 describe exactly how a client and server interact to send requests and get 
responses. However, they do not dictate how the STUN protocol is used to accomplish useful tasks. That is 
at the discretion of the client. Here, we provide some useful scenarios for applying STUN.

5.3.10.1  Discovery Process
In this scenario, a user is running a multimedia application and needs to determine which of the following 
scenarios applies to it:

On the open Internet;
Firewall that blocks UDP;
Firewall that allows UDP out, and responses have to come back to the source of the request (like a 
symmetric NAT, but no translation; this is called a symmetric UDP fi rewall);
Full-cone NAT;

1.
2.
3.

4.
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Symmetric NAT;
Restricted cone or restricted port cone NAT.

The determination of which of the six scenarios applies can be achieved through the fl ow chart shown in 
Figure 5.13. The chart refers only to the sequence of Binding Requests; Shared Secret Requests will, of 
course, be needed to authenticate each Binding Request used in the sequence. The fl ow makes use of three 
tests. In test I, the client sends a STUN Binding Request to a server, without any fl ags set in the CHANGE-
REQUEST attribute, and without the RESPONSE-ADDRESS attribute. This causes the server to send the 
response back to the address and port that the request came from. In test II, the client sends a Binding Re-
quest with both the “change IP” and “change port” fl ags from the CHANGE-REQUEST attribute set. In test 
III, the client sends a Binding Request with only the “change port” fl ag set.

The client begins by initiating test I. If this test yields no response, the client knows right away that it is not 
capable of UDP connectivity. If the test produces a response, the client examines the MAPPED-ADDRESS 
attribute. If this address and port are the same as the local IP address and port of the socket used to send the 
request, the client knows that it is not NATed. It executes test II.

If a response is received, the client knows that it has open access to the Internet (or, at least, it’s behind a 
fi rewall that behaves like a full-cone NAT, but without the translation). If no response is received, the client 
knows it is behind a symmetric UDP fi rewall.

In the event that the IP address and port of the socket did not match the MAPPED-ADDRESS attribute in 
the response to test I, the client knows that it is behind a NAT. It performs test II. If a response is received, 
the client knows that it is behind a full-cone NAT. If no response is received, it performs test I again, but this 
time, does so to the address and port from the CHANGED-ADDRESS attribute from the response to test I. 
If the IP address and port returned in the MAPPED-ADDRESS attribute are not the same as the ones from 
the fi rst test I, the client knows it’s behind a symmetric NAT. If the address and port are the same, the client 
is either behind a restricted or port restricted NAT. To make a determination about which one it is behind, the 
client initiates test III. If a response is received, it is behind a restricted NAT, and if no response is received, 
it is behind a port-restricted NAT.

This procedure yields substantial information about the operating condition of the client application. In the 
event of multiple NATs between the client and the Internet, the type that is discovered will be the type of the 
most restrictive NAT between the client and the Internet. The types of NAT, in order of restrictiveness, from 
most to least, are: symmetric, port-restricted cone, restricted cone, and full cone.

Typically, a client will redo this discovery process periodically to detect changes, or look for inconsistent 
results. It is important to note that when the discovery process is redone, it should not generally be done 
from the same local address and port used in the previous discovery process. If the same local address 
and port are reused, bindings from the previous test may still be in existence, and these will invalidate 
the results of the test. Using a different local address and port for subsequent tests resolves this problem. 
An alternative is to wait suffi ciently long to be confi dent that the old bindings have expired (half an hour 
should more than suffi ce).

5.3.10.2  Binding Lifetime Discovery
STUN can also be used to discover the lifetimes of the bindings created by the NAT. In many cases, the cli-
ent will need to refresh the binding, either through a new STUN request, or an application packet, in order 
for the application to continue to use the binding. By discovering the binding lifetime, the client can deter-
mine how frequently it needs to refresh.

5.
6.
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Figure 5.13: Flow for type discovery process.

To determine the binding lifetime, the client fi rst sends a Binding Request to the server from a particular socket, 
X. This creates a binding in the NAT. The response from the server contains a MAPPED-ADDRESS attribute, 
providing the public address and port on the NAT. Call this Pa and Pp, respectively. The client then starts a timer 
with a value of T seconds. When this timer fi res, the client sends another Binding Request to the server, using the 
same destination address and port, but from a different socket, Y. This request contains a RESPONSE-ADDRESS 
address attribute, set to (Pa,Pp). This will create a new binding on the NAT, and cause the STUN server to send a 
Binding Response that would match the old binding, if it still exists. If the client receives the Binding Response on 
socket X, it knows that the binding has not expired. If the client receives the Binding Response on socket Y (which 
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is possible if the old binding expired, and the NAT allocated the same public address and port to the new binding), 
or receives no response at all, it knows that the binding has expired.

The client can fi nd the value of the binding lifetime by doing a binary search through T, arriving eventually 
at the value where the response is not received for any timer greater than T, but is received for any timer less 
than T.

This discovery process takes quite a bit of time, and is something that will typically be run in the back-
ground on a device once it boots.

It is possible that the client can get inconsistent results each time this process is run. For example, if the NAT 
should reboot, or be reset for some reason, the process may discover a lifetime than is shorter than the actual 
one. For this reason, implementations are encouraged to run the test numerous times, and be prepared to get 
inconsistent results.

5.3.10.3  Binding Acquisition
Consider once more the case of a VoIP phone. It used the discovery process above when it started up to 
discover its environment. Now, it wants to make a call. As part of the discovery process, it determined that it 
was behind a full-cone NAT.

Consider further that this phone consists of two logically separated components—a control component that 
handles signaling, and a media component that handles the audio, video, and RTP. Both are behind the same 
NAT. Because of this separation of control and media, we wish to minimize the communication required 
between them. In fact, they may not even run on the same host.

In order to make a voice call, the phone needs to obtain an IP address and port that it can place in the call 
setup message as the destination for receiving audio.

To obtain an address, the control component sends a Shared Secret Request to the server, obtains a shared 
secret, and then sends a Binding Request to the server. No CHANGE-REQUEST attribute is present in the 
Binding Request, and neither is the RESPONSE-ADDRESS attribute. The Binding Response contains a 
mapped address. The control component then formulates a second Binding Request. This request contains 
a RESPONSE-ADDRESS which is set to the mapped address learned from the previous Binding Response. 
This Binding Request is passed to the media component, along with the IP address and port of the STUN 
server. The media component sends the Binding Request. The request goes to the STUN server which sends 
the Binding Response back to the control component. The control component receives this, and now has 
learned an IP address and port that will be routed back to the media component that sent the request.

The client will be able to receive media from anywhere on this mapped address.

In the case of silence suppression, there may be periods where the client receives no media. In this case, the 
 UDP bindings could timeout (UDP bindings in NATs are typically short; 30 seconds is common). To deal 
with this, the application can periodically retransmit the query in order to keep the binding fresh.

It is possible that both participants in the multimedia session are behind the same NAT. In that case, both 
will repeat this procedure above, and both will obtain public address bindings. When one sends media to 
the other, the media is routed to the NAT, and then turns right back around to come back into the enter-
prise, where it is translated to the private address of the recipient. This is not particularly effi cient, and 
unfortunately, does not work in many commercial NATs. In such cases, the clients may need to retry using 
private addresses.
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5.3.11  Protocol Details
This section presents the detailed encoding of a  STUN message. As noted, STUN is a request-response 
protocol. Clients send a request, and the server sends a response. There are two requests, Binding Request, 
and Shared Secret Request. The response to a Binding Request can either be the Binding Response or Bind-
ing Error Response. The response to a Shared Secret Request can either be a Shared Secret Response or a 
Shared Secret Error Response.

STUN messages are encoded using binary fi elds. All integer fi elds are carried in network byte order, that is, 
most signifi cant byte (octet) fi rst. This byte order is commonly known as big-endian. The transmission order 
is described in detail in Appendix B of RFC 791. Unless otherwise noted, numeric constants are in decimal 
(base 10).

5.3.11.1   Message Header
All STUN messages consist of a 20 byte header:

    0                   1                   2                   3

    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   |      STUN Message Type        |         Message Length        |

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   |

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                            Transaction ID

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                                                                   |

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

The Message Types can take on the following values:

      0x0001  :  Binding Request

      0x0101  :  Binding Response

      0x0111  :  Binding Error Response

      0x0002  :  Shared Secret Request

      0x0102  :  Shared Secret Response

      0x0112  :  Shared Secret Error Response

The Message Length is the count, in bytes, of the size of the message, not including the 20 byte header.

The Transaction ID is a 128 bit identifi er. It also serves as salt to randomize the request and the response. All 
responses carry the same identifi er as the request they correspond to.
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5.3.11.2   Message Attributes
After the header are 0 or more attributes. Each attribute is TLV encoded, with a 16-bit type, 16-bit length, 
and variable value:

    0                   1                   2                   3

    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   |         Type                  |            Length             |

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   |                             Value                             ....

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

The following types are defi ned:

    0x0001: MAPPED-ADDRESS

    0x0002: RESPONSE-ADDRESS

    0x0003: CHANGE-REQUEST

    0x0004: SOURCE-ADDRESS

    0x0005: CHANGED-ADDRESS

    0x0006: USERNAME

    0x0007: PASSWORD

    0x0008: MESSAGE-INTEGRITY

    0x0009: ERROR-CODE

    0x000a: UNKNOWN-ATTRIBUTES

    0x000b: REFLECTED-FROM

To allow future revisions of the specifi cation to add new attributes if needed, the attribute space is divided 
into optional and mandatory ones. Attributes with values greater than 0x7fff are optional, which means that 
the message can be processed by the client or server even though the attribute is not understood. Attributes 
with values less than or equal to 0x7fff are mandatory to understand, which means that the client or server 
cannot process the message unless it understands the attribute.

The MESSAGE-INTEGRITY attribute must be the last attribute within a message. Any attributes that are 
known, but are not supposed to be present in a message (MAPPED-ADDRESS in a request, for example) 
must be ignored.

Table 5.3 indicates which attributes are present in which messages. An M indicates that inclusion of the 
attribute in the message is mandatory, O means its optional, C means it is conditional based on some other 
aspect of the message, and N/A means that the attribute is not applicable to that message type.
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Table 5.3: Summary of Attributes

Att. Binding 
Req.

Binding 
Resp.

Binding 
Error Resp.

Shared 
Secret Req.

Shared 
Secret Resp.

Secret Shared 
Error Resp.

MAPPED-ADDRESS N/A M N/A N/A N/A N/A

RESPONSE-ADDRESS O N/A N/A N/A N/A N/A

CHANGE-REQUEST O N/A N/A N/A N/A N/A

SOURCE-ADDRESS N/A M N/A N/A N/A N/A

CHANGED-ADDRESS N/A M N/A N/A N/A N/A

USERNAME O N/A N/A N/A M N/A

PASSWORD N/A N/A N/A N/A M N/A

MESSAGE-INTEGRITY O O N/A N/A N/A N/A

ERROR-CODE N/A N/A M N/A N/A M

UNKNOWN-ATTRIBUTES N/A N/A C N/A N/A C

REFLECTED-FROM N/A C N/A N/A N/A N/A

The length refers to the length of the value element, expressed as an unsigned integral number of bytes.

MAPPED-ADDRESS
The MAPPED-ADDRESS attribute indicates the mapped IP address and port. It consists of an eight-bit 
address family, and a sixteen bit port, followed by a fi xed length value representing the IP address.

    0                   1                   2                   3

    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   |x x x x x x x x|    Family     |           Port                |

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   |                             Address                           |

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

The port is a network byte-ordered representation of the mapped port. The address family is always 0x01, 
corresponding to IPv4. The fi rst 8 bits of the MAPPED-ADDRESS are ignored, for the purposes of aligning 
parameters on natural boundaries. The IPv4 address is 32 bits.

RESPONSE-ADDRESS
The RESPONSE-ADDRESS attribute indicates where the response to a Binding Request should be sent. Its 
syntax is identical to MAPPED-ADDRESS.

CHANGED-ADDRESS
The CHANGED-ADDRESS attribute indicates the IP address and port where responses would have been 
sent from if the “change IP” and “change port” fl ags had been set in the CHANGE-REQUEST attribute of 
the Binding Request. The attribute is always present in a Binding Response, independent of the value of the 
fl ags. Its syntax is identical to MAPPED-ADDRESS.
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CHANGE-REQUEST
The CHANGE-REQUEST attribute is used by the client to request that the server use a different address and/
or port when sending the response. The attribute is 32 bits long, although only two bits (A and B) are used:

    0                   1                   2                   3

    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   |0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A B 0|

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

The meaning of the fl ags is:

A: This is the “change IP” fl ag. If true, it requests the server to send the Binding Response with a dif-
ferent IP address than the one the Binding Request was received on.

B:  This is the “change port” fl ag. If true, it requests the server to send the Binding Response with a 
different port than the one the Binding Request was received on.

SOURCE-ADDRESS
The SOURCE-ADDRESS attribute is present in Binding Responses. It indicates the source IP address and 
port that the server is sending the response from. Its syntax is identical to that of MAPPED-ADDRESS.

USERNAME
The USERNAME attribute is used for message integrity. It serves as a means to identify the shared secret 
used in the message integrity check. The USERNAME is always present in a Shared Secret Response, along 
with the PASSWORD. It is optionally present in a Binding Request when message integrity is used.

The value of USERNAME is a variable length opaque value. Its length MUST be a multiple of 4 (measured 
in bytes) in order to guarantee alignment of attributes on word boundaries.

PASSWORD
The PASSWORD attribute is used in Shared Secret Responses. It is always present in a Shared Secret Response, 
along with the USERNAME.

The value of PASSWORD is a variable length value that is to be used as a shared secret. Its length MUST be 
a multiple of 4 (measured in bytes) in order to guarantee alignment of attributes on word boundaries.

MESSAGE-INTEGRITY
The MESSAGE-INTEGRITY attribute contains an HMAC-SHA1 of the STUN message. It can be present 
in Binding Requests or Binding Responses. Since it uses the SHA1 hash, the HMAC will be 20 bytes. The 
text used as input to HMAC is the STUN message, including the header, up to and including the attribute 
preceding the MESSAGE-INTEGRITY attribute. That text is then padded with zeroes so as to be a multiple 
of 64 bytes. As a result, the MESSAGE-INTEGRITY attribute must be the last attribute in any STUN mes-
sage. The key used as input to HMAC depends on the context.
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ERROR-CODE
The ERROR-CODE attribute is present in the Binding Error Response and Shared Secret Error Response. 
It is a numeric value in the range of 100 to 699 plus a textual reason phrase encoded in UTF-8, and is 
consistent in its code assignments and semantics with SIP and HTTP. The reason phrase is meant for user 
consumption, and can be anything appropriate for the response code. The lengths of the reason phrases must 
be a multiple of 4 (measured in bytes). This can be accomplished by added spaces to the end of the text, if 
necessary. Recommended reason phrases for the defi ned response codes are presented below.

To facilitate processing, the class of the error code (the hundreds digit) is encoded separately from the rest of 
the code.

     0                   1                   2                   3

     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

    |                   0                     |Class|     Number    |

    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

    |      Reason Phrase (variable)                                ..

    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

The class represents the hundreds digit of the response code. The value must be between 1 and 6. The num-
ber represents the response code modulo 100, and its value must be between 0 and 99.

The following response codes, along with their recommended reason phrases (in brackets) are defi ned at 
this time.

400 (Bad Request): The request was malformed. The client should not retry the request without modifi -
cation from the previous attempt.

401 (Unauthorized): The Binding Request did not contain a MESSAGE-INTEGRITY attribute.
420 (Unknown Attribute): The server did not understand a mandatory attribute in the request.
430 (Stale Credentials): The Binding Request did contain a MESSAGE-INTEGRITY attribute, but it 

used a shared secret that has expired. The client should obtain a new shared secret and try again.
431 (Integrity Check Failure): The Binding Request contained a MESSAGE-INTEGRITY attribute, 

but the HMAC failed verifi cation. This could be a sign of a potential attack or client implementa-
tion error.

432 (Missing Username): The Binding Request contained a MESSAGE-INTEGRITY attribute, but not 
a USERNAME attribute. Both must be present for integrity checks.

433 (Use TLS): The Shared Secret request has to be sent over TLS, but was not received over TLS.
500 (Server Error): The server has suffered a temporary error. The client should try again.
600 (Global Failure): The server is refusing to fulfi ll the request. The client should not retry.

UNKNOWN-ATTRIBUTES
The UNKNOWN-ATTRIBUTES attribute is present only in a Binding Error Response or Shared Secret Error 
Response when the response code in the ERROR-CODE attribute is 420.

The attribute contains a list of 16 bit values, each of which represents an attribute type that was not under-
stood by the server. If the number of unknown attributes is an odd number, one of the attributes must be 
repeated in the list, so that the total length of the list is a multiple of 4 bytes.
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   0                   1                   2                   3

     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

    |      Attribute 1 Type           |     Attribute 2 Type        |

    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

    |      Attribute 3 Type           |     Attribute 4 Type    ...

    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

REFLECTED-FROM
The REFLECTED-FROM attribute is present only in Binding Responses, when the Binding Request con-
tained a RESPONSE-ADDRESS attribute. The attribute contains the identity (in terms of IP address) of the 
source where the request came from. Its purpose is to provide traceability, so that a STUN server cannot be 
used as a refl ector for denial-of-service attacks. Its syntax is identical to the MAPPED-ADDRESS attribute.

5.4 Overview of  MIDCOM Approaches
This section looks at the newly-defi ned topic of Middlebox Communications (MIDCOM), which was 
alluded to above in the context of STUN. A principal objective of RFC 3303 is to describe the underly-
ing framework of MIDCOM to enable complex applications through the middleboxes, seamlessly using a 
trusted third party. This discussion is based on RFC 3303 [SRI200201]. Developers should refer to the original 
RFC and all supportive extensions, updates, etc., for normative development guidance.

5.4.1 Background
There are a variety of intermediate devices in the Internet today that require application intelligence for 
their operation. Datagrams pertaining to real-time streaming applications, such as SIP and H.323, and peer-
to-peer applications, such as Napster and NetMeeting, cannot be identifi ed by merely examining packet 
headers. Middleboxes implementing Firewall and Network Address Translator services typically embed 
application intelligence within the device for their operation. The document specifi es an architecture and 
framework in which trusted third parties can be delegated to assist the middleboxes to perform their opera-
tion, without resorting to embedding application intelligence. Doing this will allow a middlebox to continue 
to provide the services while keeping the middlebox application agnostic.

Intermediate devices requiring application intelligence are the subject of RFC 3303. These devices are 
referred to as middleboxes throughout the document. Many of these devices enforce application-specifi c pol-
icy-based functions such as packet fi ltering,  VPN (Virtual Private Network) tunneling, Intrusion detection, 
security, and so forth. Network Address Translator service, on the other hand, provides routing transparency 
across address realms (within IPv4 routing network or across V4 and V6 routing realms) independent of 
applications.  Application Level Gateways (ALGs) are used in conjunction with NAT to examine and option-
ally modify application payload so the end-to-end application behavior remains unchanged for many of the 
applications traversing NAT middleboxes. There may be other types of services requiring embedding appli-
cation intelligence in middleboxes for their operation. The discussion scope of this RFC is however limited 
to Firewall and NAT services. Nonetheless, the MIDCOM framework is designed to be extensible to support 
the deployment of new services.

Tight coupling of application intelligence with middleboxes makes maintenance of middleboxes hard with 
the advent of new applications. Built-in application awareness typically requires updates of operating sys-
tems with new applications or newer versions of existing applications. Operators requiring support for newer 
applications will not be able to use third party software/hardware specifi c to the application and are at the 
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mercy of their middlebox vendor to make the necessary upgrade. Further, embedding intelligence for a large 
number of application protocols within the same middlebox increases complexity of the middlebox and is 
likely to be error prone and degrade in performance.

RFC 3303 describes a framework in which application intelligence can be moved from middleboxes into 
external MIDCOM agents. The premise of the framework is to devise a MIDCOM protocol that is applica-
tion independent so the middleboxes can stay focused on services such as fi rewall and NAT. The framework 
document includes some explicit and implied requirements for the MIDCOM protocol. However, it must be 
noted that these requirements are only a subset. A separate requirements document lists the requirements in 
detail.

MIDCOM agents with application intelligence can assist the middleboxes through the MIDCOM protocol 
in permitting applications such as FTP, SIP and H.323. The communication between a MIDCOM agent and 
a middlebox will not be noticeable to the end-hosts that take part in the application, unless one of the end-
hosts assumes the role of a MIDCOM agent. Discovery of middleboxes or MIDCOM agents in the path of 
an application instance is outside the scope of this RFC. Further, any communication amongst middleboxes 
is also outside the scope of RFC 3303.

RFC 3303 describes the framework in which middlebox communication takes place and the various ele-
ments that constitute the framework. Section 5.4.2 describes the terms used in the document. Section 5.4.3 
defi nes the architectural framework of a middlebox for communication with MIDCOM agents. The re-
maining sections cover the components of the framework, illustration using sample fl ows, and operational 
considerations with the MIDCOM architecture. Section 5.4.4 describes the nature of MIDCOM protocol. 
Section 5.4.5 identifi es entities that could potentially host the MIDCOM agent function. Section 5.4.6 con-
siders the role of Policy server and its function with regard to communicating MIDCOM agent authorization 
policies. Section 5.4.7 is an illustration of SIP fl ows using a MIDCOM framework in which the MIDCOM 
agent is co-resident on a SIP proxy server. Section 5.4.8 addresses operational considerations in deploying a 
protocol adhering to the framework described here. Section 5.4.9 is an applicability statement, scoping the 
location of middleboxes. 

5.4.2  Terminology
Below are the defi nitions for the terms used in RFC 3303.

5.4.2.1 Middlebox Function/Service
A middlebox function or a middlebox service is an operation or method performed by a network intermedi-
ary that may require application-specifi c intelligence for its operation. Policy-based packet fi ltering (a.k.a. 
fi rewall), Network Address Translation (NAT), Intrusion detection, Load balancing, Policy-based tunneling, 
and IPsec security are all examples of a middlebox function (or service).

5.4.2.2    Middlebox
A middlebox is a network intermediate device that implements one or more of the middlebox services. A 
NAT middlebox is a middlebox implementing NAT service. A fi rewall middlebox is a middlebox imple-
menting fi rewall service.

Traditional middleboxes embed application intelligence within the device to support specifi c application 
traversal. Middleboxes supporting the MIDCOM protocol will be able to externalize application intelligence 
into MIDCOM agents. In reality, some of the middleboxes may continue to embed application intelligence 
for certain applications and depend on MIDCOM protocol and MIDCOM agents for the support of remain-
ing applications.
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5.4.2.3   Firewall
Firewall is a policy-based packet-fi ltering middlebox function, typically used for restricting access to/from 
specifi c devices and applications. The policies are often termed Access Control Lists (ACLs).

5.4.2.4    NAT
Network Address Translation is a method by which IP addresses are mapped from one address realm to 
another, providing transparent routing to end-hosts. Transparent routing here refers to modifying end-node 
addresses en route and maintaining state for these updates so that when a datagram leaves one realm and 
enters another, datagrams pertaining to a session are forwarded to the right end-host in either realm. Refer to 
RFC 2663 for the defi nition of Transparent routing, various NAT types, and the associated terms in use. Two 
types of NAT are most common. Basic-NAT, where only an IP address (and the related IP, TCP/UDP check-
sums) of packets is altered and NAPT (Network Address Port Translation), where both an IP address and a 
transport layer identifi er, such as a TCP/UDP port (and the related IP, TCP/UDP checksums), are altered.

The term NAT here is very similar to the IPv4 NAT described in RFC 2663, but is extended beyond IPv4 
networks to include the IPv4-v6 NAT-PT described in RFC 2766. While the IPv4 NAT translates one IPv4 
address into another IPv4 address to provide routing between private v4 and external V4 address realms, 
IPv4-v6 NAT-PT (RFC 2766) translates an IPv4 address into an IPv6 address, and vice versa, to provide 
routing between a v6 address realm and an external v4 address realm. Unless specifi ed otherwise, NAT is a 
middlebox function referring to both IPv4 NAT, as well as IPv4-v6 NAT-PT.

5.4.2.5   Proxy
A proxy is an intermediate relay agent between clients and servers of an application, relaying application 
messages between the two. Proxies use special protocol mechanisms to communicate with proxy clients and 
relay client data to servers and vice versa. A proxy terminates sessions with both the client and the server, 
acting as server to the end-host client and as client to the end-host server.

Applications such as FTP, SIP, and RTSP use a control session to establish data sessions. These control and 
data sessions can take divergent paths. While a proxy can intercept both the control and data sessions, it 
might intercept only the control session. This is often the case with real-time streaming applications such as 
SIP and RTSP.

5.4.2.6    ALG
Application Level Gateways are entities that possess the application-specifi c intelligence and knowledge of 
an associated middlebox function. They examine application traffi c in transit and assist the middlebox in 
carrying out its function.

An ALG may be a co-resident with a middlebox or reside externally, communicating through a middlebox 
communication protocol. It interacts with a middlebox to set up state, access control fi lters, use middlebox 
state information, modify application specifi c payload, or perform whatever else is necessary to enable the 
application to run through the middlebox.

ALGs are different from proxies in that they are not visible to end-hosts, unlike the proxies which are 
relay agents terminating sessions with both end-hosts. They do not terminate sessions with either end-host. 
Instead, they examine, and optionally modify, application payload content to facilitate the fl ow of applica-
tion traffi c through a middlebox. ALGs are middlebox centric, in that they assist the middleboxes in carrying 
out their function, whereas, the proxies act as a focal point for application servers, relaying traffi c between 
application clients and servers.
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ALGs are similar to Proxies, in that both ALGs and proxies facilitate application-specifi c communication 
between clients and servers.

5.4.2.7  End-Hosts
End-hosts are entities that are party to a networked application instance. End-hosts referred to in this RFC, 
are specifi cally those terminating Real-time streaming Voice-over-IP applications such as SIP and H.323, 
and peer-to-peer applications such as Napster and NetMeeting.

5.4.2.8   MIDCOM Agents
MIDCOM agents are entities performing ALG functions, logically external to a middlebox. MIDCOM 
agents possess a combination of application awareness and knowledge of the middlebox function. This com-
bination enables the agents to facilitate traversal of the middlebox by the application’s packets. A MIDCOM 
agent may interact with one or more middleboxes.

Only “In-Path MIDCOM agents” are considered in this RFC. In-Path MIDCOM agents are agents which 
are within the path of those datagrams that the agent needs to examine and/or modify in fulfi lling its role 
as a MIDCOM agent. “Within the path” here simply means that the packets in question fl ow through the 
node that hosts the agent. The packets may be addressed to the agent node at the IP layer. Alternatively, they 
may not be addressed to the agent node, but may be constrained by other factors to fl ow through it. In fact, 
it is immaterial to the MIDCOM protocol which of these is the case. Some examples of In-Path MIDCOM 
agents are application proxies, gateways, or even end-hosts that are party to the application.

Agents not resident on nodes that are within the path of their relevant application fl ows are referred to as 
“Out-of-Path (OOP) MIDCOM agents” and are out of the scope of this RFC.

5.4.2.9  MIDCOM PDP
  MIDCOM Policy Decision Point (PDP) is primarily a Policy Decision Point (PDP) as defi ned in RFC 3198; 
and also acts as a policy repository, holding MIDCOM-related policy profi les in order to make authorization 
decisions. RFC 3198 defi nes a PDP as “a logical entity that makes policy decisions for itself or for other net-
work elements that request such decisions”; and a policy repository as “a specifi c data store that holds policy 
rules, their conditions and actions, and related policy data.”

A middlebox and a MIDCOM PDP may communicate further if the MIDCOM PDP’s policy changes or if a 
middlebox needs further information. The MIDCOM PDP may, at any time, notify the middlebox to termi-
nate authorization for an agent.

The protocol facilitating the communication between a middlebox and MIDCOM PDP need not be part of 
the MIDCOM protocol. Section 5.4.6 in the document addresses the MIDCOM PDP interface and protocol 
framework independent of the MIDCOM framework.

Application-specifi c policy data and policy interface between an agent or application endpoint and a MID-
COM PDP is out of bounds for this RFC. The MIDCOM PDP issues addressed in the document are focused 
at an aggregate domain level as befi tting the middlebox. For example, a SIP MIDCOM agent may choose to 
query a MIDCOM PDP for the administrative (or corporate) domain to fi nd whether a certain user is allowed 
to make an outgoing call. This type of application-specifi c policy data, as befi tting an end user, is out of 
bounds for the MIDCOM PDP considered in this RFC. It is within bounds, however, for the MIDCOM PDP 
to specify the specifi c end-user applications (or tuples) for which an agent is permitted to be an ALG.
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5.4.2.10   Middlebox Communication (MIDCOM) protocol
The protocol between a MIDCOM agent and a middlebox allows the MIDCOM agent to invoke services of 
the middlebox and allow the middlebox to delegate application specifi c processing to the MIDCOM agent. 
The MIDCOM protocol allows the middlebox to perform its operation with the aid of MIDCOM agents, 
without resorting to embedding application intelligence. The principal motivation behind architecting this 
protocol is to enable complex applications through middleboxes, seamlessly using a trusted third party, i.e., 
a MIDCOM agent.

This is a protocol yet to be devised.

5.4.2.11  MIDCOM Agent Registration
A MIDCOM agent registration is defi ned as the process of provisioning agent profi le information with the 
middlebox or a MIDCOM PDP. MIDCOM agent registration is often a manual operation performed by an 
operator rather than the agent itself.

A MIDCOM agent profi le may include agent authorization policy (i.e., session tuples for which the agent is 
authorized to act as ALG), agent-hosting-entity (e.g., Proxy, Gateway, or end-host which hosts the agent), 
agent accessibility profi le (including any host level authentication information), and security profi le (for the 
messages exchanged between the middlebox and the agent).

5.4.2.12  MIDCOM Session
A MIDCOM session is defi ned to be a lasting association between a MIDCOM agent and a middlebox. The 
MIDCOM session is not assumed to imply any specifi c transport layer protocol. Specifi cally, this should not 
be construed as referring to a connection-oriented TCP protocol.

5.4.2.13  Filter
A fi lter is packet matching information that identifi es a set of packets to be treated a certain way by a mid-
dlebox. This defi nition is consistent with RFC 3198, which defi nes a fi lter as “A set of terms and/or criteria 
used for the purpose of separating or categorizing. This is accomplished via single- or multifi eld matching of 
traffi c header and/or payload data.”

5-Tuple specifi cation of packets in the case of a fi rewall and 5-tuple specifi cation of a session in the case of a 
NAT middlebox function are examples of a fi lter.

5.4.2.14  Policy action (or) Action
Policy action (or Action) is a description of the middlebox treatment/service to be applied to a set of packets. 
This defi nition is consistent with RFC 3198, which defi nes a policy action as “Defi nition of what is to be 
done to enforce a policy rule, when the conditions of the rule are met. Policy actions may result in the execu-
tion of one or more operations to affect and/or confi gure network traffi c and network resources.”

NAT Address-BIND (or Port-BIND in the case of NAPT) and fi rewall permit/deny action are examples of an 
Action.

5.4.2.15  Policy Rule(s)
The combination of one or more fi lters and one or more actions. Packets matching a fi lter are to be treated as 
specifi ed by the associated action(s). The Policy rules may also contain auxiliary attributes such as individual 
rule type, timeout values, creating agent, etc.

Policy rules are communicated through the MIDCOM protocol.
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5.4.3  Architectural Framework for Middleboxes
A middlebox may implement one or more of the middlebox functions selectively on multiple interfaces of 
the device. There can be a variety of MIDCOM agents interfacing with the middlebox to communicate with 
one or more of the middlebox functions on an interface. As such, the middlebox communication protocol 
must allow for selective communication between a specifi c MIDCOM agent and one or more middlebox 
functions on the interface. Figure 5.14 identifi es a possible layering of the service supported by a middlebox 
and a list of MIDCOM agents that might interact with it.

Middlebox Function-specific Policy Rule(s) 
and Other Attributes 

Middlebox Communication 
Protocol (MIDCOM) Interface 

Firewall NAT 
VPN 

Tunneling 
Intrusion 
Detection 

Policy 
Interface 

Middlebox 
Function 

Middlebox 
Managed 

Resources 

MIDCOM Agent 
Co-resident 

on End-hosts 

MIDCOM 
Protocol 

MIDCOM 
PDP 

MIDCOM Agent 
Co-resident 
on Appl. GW 

MIDCOM Agent 
Co-resident on 
Proxy Server 

Figure 5.14: MIDCOM agents interfacing with a middlebox.

Firewall ACLs, NAT-BINDs, NAT address-maps, and Session-state are a few of the middlebox function-
specifi c policy rules. A session state may include middlebox function-specifi c attributes, such as timeout 
values, NAT translation parameters (i.e., NAT-BINDS), and so forth. As Session-state may be shared across 
middlebox functions, a Session-state may be created by a function, and terminated by a different function. 
For example, a session-state may be created by the fi rewall function, but terminated by the NAT function, 
when a session timer expires.

Application specifi c MIDCOM agents (co-resident on the middlebox or external to the middlebox) would examine 
the IP datagrams and help identify the application the datagram belongs to, and assist the middlebox in perform-
ing functions unique to the application and the middlebox service. For example, a MIDCOM agent, assisting a 
NAT middlebox, might perform payload translations, whereas a MIDCOM agent assisting a fi rewall middlebox 
might request the fi rewall to permit access to application-specifi c, dynamically-generated session traffi c.

5.4.4  MIDCOM Protocol
The MIDCOM protocol between a MIDCOM agent and a middlebox allows the MIDCOM agent to  invoke 
services of the middlebox and allow the middlebox to delegate application-specifi c processing to the 
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 MIDCOM agent. The protocol will allow MIDCOM agents to signal the middleboxes, to let complex appli-
cations using dynamic port-based sessions through them (i.e., middleboxes) seamlessly.

It is important to note that an agent and a middlebox can be on the same physical device. In such a case, they 
may communicate using a MIDCOM protocol message format (but using a non-IP based transport, such as 
IPC messaging), (or) they may communicate using well-defi ned API/DLL, (or) the application intelligence 
is fully embedded into the middlebox service (as it is done today in many stateful inspection fi rewall devices 
and NAT devices).

The MIDCOM protocol will consist of a session setup phase, run-time session phase, and a session termina-
tion phase.

Session setup must be preceded by registration of the MIDCOM agent with either the middlebox or the 
MIDCOM PDP. The MIDCOM agent access and authorization profi le may either be preconfi gured on the 
middlebox (or) listed on a MIDCOM PDP; the middlebox is confi gured to consult. MIDCOM shall be a client-
server protocol initiated by the agent.

A MIDCOM session may be terminated by either of the parties. A MIDCOM session termination may also 
be triggered by (a) the middlebox or the agent going out of service and not being available for further MID-
COM operations, or (b) the MIDCOM PDP notifying the middlebox that a particular MIDCOM agent is no 
longer authorized.

The MIDCOM protocol data exchanged during runtime is governed principally by the middlebox services 
the protocol supports. Firewall and NAT middlebox services are considered in this RFC. Nonetheless, the 
MIDCOM framework is designed to be extensible to support the deployment of other services as well.

5.4.5  MIDCOM Agents
MIDCOM agents are logical entities which may reside physically on nodes external to a middlebox, pos-
sessing a combination of application awareness and knowledge of middlebox function. A MIDCOM agent 
may communicate with one or more middleboxes. The issues of middleboxes discovering agents, or vice 
versa, are outside the scope of this RFC. The focus of the document is the framework in which a MIDCOM 
agent communicates with a middlebox using MIDCOM protocol, which is yet to be devised. Specifi cally, 
the focus is restricted to just the In-Path agents.

In-Path MIDCOM agents are MIDCOM agents that are located naturally within the message path of the 
application(s) they are associated with. Bundled session applications, such as H.323, SIP, and RTSP which have 
separate control and data sessions, may have their sessions take divergent paths. In those scenarios, In-Path 
MIDCOM agents are those that fi nd themselves in the control path. In a majority of cases, a middlebox will 
likely require the assistance of a single agent for an application in the control path alone. However, it is possible 
that a middlebox function, or a specifi c application traversing the middlebox might require the intervention of 
more than a single MIDCOM agent for the same application, one for each sub-session of the application.

Application Proxies and gateways are a good choice for In-Path MIDCOM agents as these entities, by 
defi nition, are in the path of an application between a client and server. In addition to hosting the MIDCOM 
agent function, these natively in-path application-specifi c entities may also enforce application-specifi c 
choices locally, such as dropping messages infected with known viruses or lacking user authentication. 
These entities can be interjecting both the control and data sessions. For example, FTP control and Data ses-
sions are interjected by an FTP proxy server.

However, proxies may also be interjecting just the control session and not the data sessions, as is the case 
with real-time streaming applications such as SIP and RTSP. Note, applications may not always traverse a 
proxy and some applications may not have a proxy server available.
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SIP proxies and H.323 gatekeepers may be used to host MIDCOM agent functions to control middleboxes 
implementing fi rewall and NAT functions. The advantage of using in-path entities, as opposed to creating 
an entirely new agent, is that the in-path entities already possess application intelligence. You will need to 
merely enable the use of the MIDCOM protocol to be an effective MIDCOM agent. Figure 5.15 illustrates 
a scenario where the in-path MIDCOM agents interface with the middlebox. Let us say, the MIDCOM PDP 
has preconfi gured the in-path proxies as trusted MIDCOM agents on the middlebox and the packet fi lter 
implements a ‘default-deny’ packet fi ltering policy. Proxies use their application-awareness knowledge to 
control the fi rewall function and selectively permit a certain number of voice stream sessions dynamically 
using MIDCOM protocol.

In the illustration below, the proxies and the MIDCOM PDP are shown inside a private domain. The intent 
however, is not to imply that they be inside the private boundary alone. The proxies may also reside external 
to the domain. The only requirement is that there be a trust relationship with the middlebox.

Application Data Path Datagrams 
Application Control Path Datagrams 
Middlebox Communication Protocol (MIDCOM) 
MIDCOM PDP Interface 
Private Domain Boundary 

Firewall 

SIP 

SIP 
RTSP 

RTSP 

Data Streams 

End-hosts 

Outside the 
Private Domain Within a Private Domain 

Middlebox 

Legend: 

MIDCOM 
Protocol 
Interface 

Policy 
Interface 

SIP 
Proxy 

MIDCOM 
PDP 

MIDCOM 

RTSP 
Proxy 

(RTP, RTSP Data, etc.) 

Figure 5.15: In-path MIDCOM agents for middlebox communication.

5.4.5.1  End-hosts as In-path MIDCOM Agents
End-hosts are another variation of In-Path MIDCOM agents. Unlike Proxies, End-hosts are a direct party to 
the application and possess all the end-to-end application intelligence there is to it. End-hosts presumably 
terminate both the control and data paths of an application. Unlike other entities hosting MIDCOM agents, 
end-host is able to process secure datagrams. However, the problem would be one of manageability—up-
grading all the end-hosts running a specifi c application.
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5.4.6  MIDCOM PDP Functions
The functional decomposition of the MIDCOM architecture assumes the existence of a logical entity, 
known as MIDCOM PDP, responsible for performing authorization and related provisioning services for the 
middlebox as depicted in Figure 5.14. The MIDCOM PDP is a logical entity which may reside physically on 
a middlebox or on a node external to the middlebox. The protocol employed for communication between the 
middlebox and the MIDCOM PDP is unrelated to the MIDCOM protocol.

Agents are registered with a MIDCOM PDP for authorization to invoke services of the middlebox. The 
MIDCOM PDP maintains a list of agents that are authorized to connect to each of the middleboxes the 
MIDCOM PDP supports. In the context of the MIDCOM Framework, the MIDCOM PDP does not assist a 
middlebox in the implementation of the services it provides.

The MIDCOM PDP acts in an advisory capacity to a middlebox, to authorize or terminate authorization for 
an agent attempting connectivity to the middlebox. The primary objective of a MIDCOM PDP is to com-
municate agent authorization information so as to ensure that the security and integrity of a middlebox is 
not jeopardized. Specifi cally, the MIDCOM PDP should associate a trust level with each agent attempting to 
connect to a middlebox and provide a security profi le. The MIDCOM PDP should be capable of addressing 
cases when end-hosts are agents to the middlebox.

5.4.6.1  Authentication, Integrity and  Confi dentiality
Host authenticity and individual message security are two distinct types of security considerations. Host 
authentication refers to credentials required of a MIDCOM agent to authenticate itself to the middlebox and 
vice versa. When authentication fails, the middlebox must not process signaling requests received from the 
agent that failed authentication. Two-way authentication should be supported. In some cases, the two-way 
authentication may be tightly linked to the establishment of keys to protect subsequent traffi c. Two-way 
authentication is often required to prevent various active attacks on the MIDCOM protocol and secure estab-
lishment of keying material.

Security services such as authentication, data integrity, confi dentiality and replay protection may be adapted 
to secure MIDCOM messages in an untrusted domain. Message authentication is the same as data origin 
authentication and is an affi rmation that the sender of the message is who it claims to be. Data integrity 
refers to the ability to ensure that a message has not been accidentally (maliciously or otherwise) altered 
or destroyed. Confi dentiality is the encryption of a message with a key, so that only those in possession of 
the key can decipher the message content. Lastly, replay protection is a form of sequence integrity, so when 
an intruder plays back a previously-recorded sequence of messages, the receiver of the replay messages 
will simply drop the replay messages into bit-bucket. Certain applications of the MIDCOM protocol might 
require support for nonrepudiation as an option of the data integrity service. Typically, support for nonrepu-
diation is required for billing, service level agreements, payment orders, and rec eipts for delivery of service.

  IPsec IP Authentication Header (AH) offers data-origin authentication, data integrity and protection from 
message replay.   IPsec Encapsulating Security Payload (ESP) provides data-origin authentication to a 
lesser degree (same as IPsec AH if the MIDCOM transport protocol turns out to be TCP or UDP), message 
confi dentiality, data integrity, and protection from replay. Besides the IPsec based protocols, there are other 
security options as well. TLS based transport layer security is one option. There are also many application-
layer security mechanisms available. Simple Source-address based security is a minimal form of security 
and should be relied on only in the most trusted environments, where those hosts will not be spoofed.

The MIDCOM message security shall use existing standards, whenever the existing standards satisfy the 
requirements. Security shall be specifi ed to minimize the impact on sessions that do not use the security 
option. Security should be designed to avoid introducing, and to minimize the impact of, denial of service 
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attacks. Some security mechanisms and algorithms require substantial processing or storage, in which case 
the security protocols should protect themselves as well against possible fl ooding attacks that overwhelm the 
endpoint (i.e., the middlebox or the agent) with such processing. For connection-oriented protocols (such as 
TCP) using security services, the security protocol should detect premature closure or truncation attacks.

5.4.6.2  Registration and Deregistration of MIDCOM Agents
Prior to allowing MIDCOM agents to invoke services of the middlebox, a registration process must take 
place. Registration is a different process than establishing a MIDCOM session. The former requires pro-
visioning agent profi le information with the middlebox or a MIDCOM PDP. Agent registration is often a 
manual operation performed by an operator rather than the agent itself. Setting up a MIDCOM session refers 
to establishing a MIDCOM transport session and exchanging security credentials between an agent and a 
middlebox. The transport session uses the registered information for session establishment.

Profi le of a MIDCOM agent includes agent authorization policy (i.e., session tuples for which the agent is 
authorized to act as ALG), agent-hosting-entity (e.g., Proxy, Gateway or end-host which hosts the agent), 
agent accessibility profi le (including any host level authentication information), and security profi le (i.e., 
security requirements for messages exchanged between the middlebox and the agent).

MIDCOM agent profi le may be preconfi gured on a middlebox. Subsequent to that, the agent may choose to 
initiate a MIDCOM session prior to any data traffi c. For example, MIDCOM agent authorization policy for a 
middlebox service may be preconfi gured by specifying the agent in conjunction with a fi lter. In the case of a 
fi rewall, for example, the ACL tuple may be altered to refl ect the optional Agent presence. The revised ACL 
may look something like the following.

   (<Session-Direction>, <Source-Address>, <Destination-Address>, <IP-

   Protocol>, <Source-Port>, <Destination-Port>, <Agent>)

The reader should note that this is an illustrative example and not necessarily the actual defi nition of an 
ACL tuple. The formal description of the ACL is yet to be devised. Agent accessibility information should 
also be provisioned. For a MIDCOM agent, accessibility information includes the IP address, trust level, 
host authentication parameters, and message authentication parameters. Once a session is established 
between a middlebox and a MIDCOM agent, that session should be usable with multiple instances of the 
application(s), as appropriate. Note, all of this could be captured in an agent profi le for ease of management.

The technique described above is necessary for the pre-registration of MIDCOM agents with the middle-
box. The middlebox provisioning may remain unchanged, if the middlebox learns of the registered agents 
through a MIDCOM PDP. In either case, the MIDCOM agent should initiate the session prior to the start 
of the application. If the agent session is delayed until after the application has started, the agent might be 
unable to process the control stream to permit the data sessions. When a middlebox notices an incoming 
MIDCOM session, and the middlebox has no prior profi le of the MIDCOM agent, the middlebox will con-
sult its MIDCOM PDP for authenticity, authorization, and trust guidelines for the session.

5.4.7  MIDCOM Framework Illustration Using an In-Path Agent
In Figure 5.16, one considers SIP applications to illustrate the operation of the MIDCOM protocol. Specifi -
cally, the application assumes that a caller, external to a private domain, initiates the call. The middlebox is 
assumed to be located at the edge of the private domain. A   SIP phone (SIP User Agent Client/Server) inside 
the private domain is capable of receiving calls from external SIP phones. The caller uses a SIP Proxy, node 
located external to the private domain, as its outbound proxy. No interior proxy is assumed for the callee. 
Lastly, the external SIP proxy node is designated to host the MIDCOM agent function.
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Arrows 1 and 8 in the fi gure below refer to a SIP call setup exchange between the external SIP phone and 
the SIP proxy. Arrows 4 and 5 refer to a SIP call setup exchange between the SIP proxy and the interior SIP 
phone, and are assumed to be traversing the middlebox. Arrows 2, 3, 6 and 7 below, between the SIP proxy 
and the middlebox, refer to MIDCOM communication. Na and Nb represent RTP/RTCP media traffi c path 
in the external network. Nc and Nd represent media traffi c inside the private domain.

Na 

Nb 

Nc 

Nd 

2 3 7 6 

4 

5 

1 

8 

SIP 
Proxy 

Middlebox 
External 

SIP Phone 

SIP Phone 
within Private 

Domain 

Figure 5.16: MIDCOM framework illustration with   in-path SIP proxy.

As for the SIP application, we make the assumption that the middlebox is preconfi gured to accept SIP calls 
into the private SIP phone. Specifi cally, this would imply that the middlebox implementing fi rewall service 
is preconfi gured to permit SIP calls (destination TCP or UDP port number set to 5060) into the private 
phone. Likewise, middlebox implementing NAPT service would have been preconfi gured to provide a port 
binding, to permit incoming SIP calls to be redirected to the specifi c private SIP phone. In other words, the 
INVITE from the external caller is not made to the private IP address but to the NAPT external address.

The objective of the MIDCOM agent in the following illustration is to merely permit the RTP/RTCP media 
stream through the middlebox, when using the MIDCOM protocol architecture outlined in the document. 
A SIP session typically establishes two RTP/RTCP media streams—one from the callee to the caller and 
another from the caller to the callee. These media sessions are UDP based and will use dynamic ports. The 
dynamic ports used for the media stream are specifi ed in the SDP section of the SIP payload message. The 
MIDCOM agent will parse the SDP section and use the MIDCOM protocol to (a) open pinholes (i.e., permit 
RTP/RTCP session tuples) in a middlebox implementing fi rewall service, or (b) create PORT bindings and 
appropriately modify the SDP content to permit the RTP/RTCP streams through a middlebox implementing 
NAT service. The MIDCOM protocol should be suffi ciently rich and expressive to support the operations 
described under the timelines. The examples do not show the timers maintained by the agent to keep the 
middlebox policy rule(s) from timing out.

MIDCOM agent Registration and connectivity between the MIDCOM agent and the middlebox are not shown 
in the interest of restricting the focus of the MIDCOM transactions to enabling the middlebox to let the media 
stream through. MIDCOM PDP is also not shown in the diagram below or on the timelines for the same reason.

The following subsections illustrate a typical timeline sequence of operations that transpire with the various 
elements involved in a SIP telephony application path. Each subsection is devoted to a specifi c instantiation 
of a middlebox service: NAPT, fi rewall, and a combination of both NAPT and fi rewall are considered.

5.4.7.1 Timeline Flow— Middlebox Implementing Firewall Service
Figure 5.17 assumes a middlebox implementing a fi rewall service. One further assumes that the middle-
box is preconfi gured to permit SIP calls (destination TCP or UDP port number set to 5060) into the private 
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phone. The following timeline illustrates the operations performed by the  MIDCOM agent, to permit RTP/
RTCP media stream through the middlebox.

The INVITE from the caller (external) is assumed to include the SDP payload. You will note that the MID-
COM agent requests the middlebox to permit the Private-to-external RTP/RTCP fl ows before the INVITE 
is relayed to the callee. This is because, in SIP, the calling party must be ready to receive the media when 
it sends the INVITE with a session description. If the called party (private phone) assumes this and sends 
“early media” before sending the 200 OK response, the fi rewall will have blocked these packets without this 
initial MIDCOM signaling from the agent.

SIP Phone 
(External) 

SIP Phone 
(Private) 

Middlebox 
(FIREWALL Service) 

SIP Proxy 
(MIDCOM Agent) 

180 Ringing 
180 Ringing 

Permit RTP2 and RTCP2 

Cancel permits to RTP1, 
RTCP1, RTP2, and RTCP2

RTP2 and RTCP2 OKed 

Permit RTP1 and RTCP1 

Identify end-to-end parameters (from 
Caller’s SDP) for the Pri-to-Ext RTP 
and RTCP sessions. (RTP1, RTCP1)

Identify end-to-end parameters (from
Callee’s SDP) for the Ext-to-Pri RTP 
and RTCP sessions. (RTP2, RTCP2)

RTP1 and RTCP1 OKed 

RTP1, RTCP1, RTP2, 
and RTCP2 cancelled

ACK 
ACK 

BYE 
BYE 

100 Trying 

200 OK 

200 OK 

200 OK 

200 OK 

INVITE 

INVITE 

MIDCOM Control Traffic 
SIP Control Traffic 
RTP/RTCP Media Traffic 

Legend 

RTP/RTCP

Figure 5.17: Timeline fl ow—Middlebox implementing fi rewall service.
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5.4.7.2 Timeline Tow—Middlebox Implementing  NAPT Service
Figure 5.18 assumes a middlebox implementing NAPT service. One makes the assumption that the middle-
box is preconfi gured to redirect SIP calls to the specifi c private SIP phone application. i.e., the INVITE from 
the external caller is not made to the private IP address, but to the NAPT external address. Let us say, the 
external phone’s IP address is Ea, NAPT middlebox external Address is Ma, and the internal SIP phone’s 
private address is Pa. SIP calls to the private SIP phone will arrive as TCP/UDP sessions, with the destina-
tion address and port set to Ma and 5060 respectively. The middlebox will redirect these datagrams to the 
internal SIP phone. The following timeline will illustrate the operations necessary to be performed by the 
MIDCOM agent to permit the RTP/RTCP media stream through the middlebox.

As with the previous example (Section 5.4.7.1), the INVITE from the caller (external) is assumed to 
include the SDP payload. You will note that the MIDCOM agent requests the middlebox to create NAT 
session descriptors for the private-to-external RTP/RTCP fl ows before the INVITE is relayed to the private 
SIP phone (for the same reasons as described in Section 5.4.7.1). If the called party (private phone) sends 
“early media” before sending the 200 OK response, the NAPT middlebox will have blocked these packets 
without the initial MIDCOM signaling from the agent. Also, note that after the 200 OK is received by the 
proxy from the private phone, the agent requests the middlebox to allocate NAT session descriptors for the 
external-to-private RTP2 and RTCP2 fl ows, such that the ports assigned on the Ma for RTP2 and RTCP2 
are contiguous. The RTCP stream does not happen with a noncontiguous port. Lastly, you will note that 
even though each media stream (RTP1, RTCP1, RTP2 and RTCP2) is independent, they are all tied to the 
single SIP control session, while their NAT session descriptors were being created. Finally, when the agent 
issues a terminate session bundle command for the SIP session, the middlebox is assumed to delete all 
associated media stream sessions automatically.
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Figure 5.18: Timeline fl ow—Middlebox implementing NAPT service.
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5.4.7.3 Timeline fl ow—Middlebox implementing  NAPT and fi rewall.
Figure 5.19 assumes a middlebox implementing a combination of a fi rewall and a stateful NAPT service. 
One makes the assumption that the NAPT function is confi gured to translate the IP and TCP headers of the 
initial SIP session into the private SIP phone, and the fi rewall function is confi gured to permit the initial 
SIP session.

In the following timeline, it may be noted that the fi rewall description is based on packet fi elds on the wire 
(for example, as seen on the external interface of the middlebox). In order to ensure correct behavior of the 
individual services, you will notice that NAT specifi c MIDCOM operations precede fi rewall specifi c opera-
tions on the MIDCOM agent. This is noticeable in the timeline below when the MIDCOM agent processes 
the “200 OK” from the private SIP phone. The MIDCOM agent initially requests the NAT service on the 
middlebox to set up port-BIND and session-descriptors for the media stream in both directions. Subsequent 
to that, the MIDCOM agent determines the session parameters (i.e., the dynamic UDP ports) for the media 
stream, as viewed by the external interface, and requests the fi rewall service on the middlebox to permit 
those sessions through.
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Figure 5.19: Timeline fl ow—Middlebox implementing NAPT and fi rewall.
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5.4.8 Operational Considerations

5.4.8.1  Multiple MIDCOM sessions between agents and middlebox
A middlebox cannot be assumed to be a simple device implementing just one middlebox function and no 
more than a couple of interfaces. Middleboxes often combine multiple intermediate functions into the same 
device and have the ability to provision individual interfaces of the same device with different sets of func-
tions and varied provisioning for the same function across the interfaces.

As such, a MIDCOM agent ought to be able to have a single MIDCOM session with a middlebox and use 
the MIDCOM interface on the middlebox to interface with different services on the same middlebox.

5.4.8.2 Asynchronous Notifi cation to MIDCOM Agents
Asynchronous notifi cation by the middlebox to a MIDCOM agent can be useful for events such as Session 
creation, Session termination, MIDCOM protocol failure, middlebox function failure or any other signifi cant 
event. Independently, ICMP error codes can also be useful to notify transport layer failures to the agents.

In addition, periodic notifi cation of various forms of data, such as statistics update, would also be a useful 
function that would be benefi cial to certain types of agents.

5.4.8.3  Timers on Middlebox Considered Useful
When supporting the MIDCOM protocol, the middlebox is required to allocate dynamic resources, as 
specifi ed in policy rule(s), upon request from agents. Explicit release of dynamically allocated resources 
happens when the application session is ended or when a MIDCOM agent requests the middlebox to 
release the resource.

However, the middlebox should be able to recover the dynamically allocated resources, even as the agent 
that was responsible for the allocation is not alive. Associating a lifetime for these dynamic resources and 
using a timer to track the lifetime can be a good way to accomplish this.

5.4.8.4 Middleboxes Supporting Multiple Services
A middlebox could be implementing a variety of services (e.g. NAT and fi rewall) in the same box. Some 
of these services might have interdependency on shared resources and sequence of operation. Others may 
be independent of each other. Generally speaking, the sequence in which these function operations may be 
performed on datagrams is not within the scope of this RFC.

In the case of a middlebox implementing NAT and fi rewall services, it is safe to state that the NAT operation 
on an interface will precede a fi rewall on the egress and will follow a fi rewall on the ingress. Further, fi rewall 
access control lists used by a fi rewall are assumed to be based on session parameters, as seen on the interface 
supporting fi rewall service.

5.4.8.5  Signaling and Data Traffi c
The class of applications the MIDCOM architecture addresses focus around applications that have a com-
bination of one or more signaling and data traffi c sessions. The signaling may be done out-of-band, using a 
dedicated stand-alone session or may be done in-band, within a data session. Alternately, signaling may also 
be done as a combination of both stand-alone and in-band sessions.

SIP is an example of an application based on distinct signaling and data sessions. A SIP signaling session is 
used for call setup between a caller and a callee. A MIDCOM agent may be required to examine/modify SIP 
payload content to administer the middlebox so as to let the media streams (RTP/RTCP based) through. A 
MIDCOM agent is not required to intervene in the data traffi c.
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Signaling and context-specifi c Header information is sent in-band, within the same data stream for ap-
plications such as HTTP embedded applications, Sun-RPC (embedding a variety of NFS apps), Oracle 
transactions (embedding Oracle SQL+, MS ODBC, Peoplesoft) etc.

H.323 is an example of an application that sends signaling in both dedicated stand-alone sessions, as well as 
in conjunction with data. H.225.0 call signaling traffi c traverses middleboxes by virtue of static policy, no 
MIDCOM control needed. H.225.0 call signaling also negotiates ports for an H.245 TCP stream. A MID-
COM agent is required to examine/modify the contents of the H.245 so that H.245 can traverse it.

H.245 traverses the middlebox and also carries Open Logical Channel information for media data. So, the 
MIDCOM agent is once again required to examine/modify the payload content needs to let the media 
traffi c fl ow.

The MIDCOM architecture takes into consideration, supporting applications with independent signaling and 
data sessions as well as applications that have signaling and data communicated over the same session.

In the cases where signaling is done on a single stand-alone session, it is desirable to have a MIDCOM agent 
interpret the signaling stream and program the middlebox (that transits the data stream) so as to let the data 
traffi c through uninterrupted.

5.4.9 Applicability Statement
Middleboxes may be stationed in a number of topologies. However, the signaling framework outlined in this 
RFC may be limited to only those middleboxes that are located in a DMZ (Demilitarized Zone) at the edge 
of a private domain, connecting to the Internet. Specifi cally, the assumption is that you have a single middle-
box (running  NAT or fi rewall) along the application route. Discovery of a middlebox along an application 
route is outside the scope of this RFC. It is conceivable to have middleboxes located between departments 
within the same domain or inside the service provider’s domain and so forth. However, care must be taken to 
review each individual scenario and determine the applicability on a case-by-case basis.

The applicability may also be illustrated as follows. Real-time and streaming applications, such as Voice-
Over-IP, and peer-to-peer applications, such as Napster and Netmeeting, require administering fi rewalls 
and NAT middleboxes to let their media streams reach hosts inside a private domain. The requirements are 
in the form of establishing a “pin-hole” to permit a TCP/UDP session (the port parameters of which are 
dynamically determined) through a fi rewall or retain an address/port bind in the NAT device to permit ses-
sions to a port. These requirements are met by current generation middleboxes using adhoc methods, such 
as embedding application intelligence within a middlebox to identify the dynamic session parameters and 
administering the middlebox internally as appropriate. The objective of the MIDCOM architecture is to cre-
ate a unifi ed, standard way to exercise this functionality, currently existing in an ad-hoc fashion, in some of 
the middleboxes.

By adopting MIDCOM architecture, middleboxes will be able to support newer applications they have not 
been able to support thus far. MIDCOM architecture does not, and must not in anyway, change the funda-
mental characteristic of the services supported on the middlebox.

Typically, organizations shield a majority of their corporate resources (such as end-hosts) from visibility to 
the external network by the use of a  DMZ at the domain edge. Only a portion of these hosts are allowed to 
be accessed by the external world. The remaining hosts and their names are unique to the private domain. 
Hosts visible to the external world and the authoritative name server that maps their names to network ad-
dresses are often confi gured within a DMZ in front of a fi rewall. Hosts and middleboxes within DMZ are 
referred to as DMZ nodes.
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Figure 5.20 illustrates the confi guration of a private domain with a DMZ at its edge. Actual confi gurations 
may vary. Internal hosts are accessed only by users inside the domain. Middleboxes, located in the DMZ 
may be accessed by agents inside or outside the domain.

NAT Middlebox 

Firewall 
Middlebox 

Stub A 

Service Provider Router 

WAN 

DMZ - Network 

DMZ-Host1 DMZ-Host2 DMZ-Name 
Server 

DMZ-Web 
Server, etc. 

Internal Hosts (inside the private domain) 

Int-Host1 Int-Host2 Int-Hostn Int-Name Server 

Figure 5.20: DMZ network confi guration of a private domain.

5.5 Pragmatic Approaches using  SIP Border Gateways
The previous sections of this chapter discussed some of the issues involved in supporting VoIP on a large 
scale due to addressing problems, and some current approaches (e.g., STUN, MIDCOM) to address these 
concerns. As an outgrowth of these limitations, Session Border Controllers (SBC) have emerged of late to 
assist service providers support VoIP and real-time interactive IP-based video/multimedia sessions in fi ve 
areas: security, service reach maximization (end-to-end feasibility), SLA assurance, revenue and profi t pro-
tection, and regulatory and law enforcement [OUE200501]. The interest in this context is on the fi rst two items 
in this list. 

A session border controller is a piece of network equipment or a collection of functions that control real-
time session traffi c at the signaling, call-control, and packet layers as they cross a notional packet-to-packet 
network border between networks or between network segments. SBCs are critical to the deployment of 
VoIP networks, because they address the inability of real-time session traffi c to cross NAT device or fi rewall 
boundaries. Signaling protocols such as H.323, MGCP, and SIP transfer information including media session 
endpoint IP addresses and UDP port numbers in different layers above OSI Layer 4 (IETF TCP/UDP). This 
information cannot be seen by a normal fi rewall or NAT device, so the subsequent sessions set up are not 
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recognized, do not pass through fi rewalls, and have incompatible IP addresses across NAT boundaries. SBCs 
allow NAT and fi rewall traversal, normally by incorporating those elements with signaling controllers for the 
required signaling protocols [LIG200502].

SBCs are devices used in VoIP to deal with a number of interworking issues. The controller refreshes NAT 
bindings for SIP registrations. The SBC compresses SIP packets to less than 1492 bytes (UDP fragmenta-
tion). It hides routing information to the outside world. The SBC ensures that an end-to-end media path is 
established. Also it helps the teardown process after the call is completed.

SBCs address the requirements at the boundary where different service provider networks interconnect or 
“peer.” In general, session border controllers integrate signaling and media control, encompassing the fol-
lowing three functional subelements: (a) Interconnect Border Control Function, (b) Interworking Function, 
and (c) Interconnect Border Gateway Function. 

One example of SBC usage is in the IP Multimedia Subsystem (IMS). IMS is an architecture defi ned by 
the Third Generation Partnership Project (3GPP) for the delivery of real-time voice, video and multimedia 
services using SIP over packet-switched networks with a focus on mobile wireless access networks. This 
architecture has been extended by ETSI to more completely satisfy the service delivery requirements in 
fi xed-wireline access networks. Some of these additional requirements include [OUE200501]:

Premise-based NAT traversal;
Overlapping private address space and enterprise MPLS VPN bridging;
IPv4 to IPv6 interworking for signaling and media;
SIP interworking for H.323 IP PBXs and gatekeeper trunking/termination networks;
Media-based DTMF (RFC 2833) to signaling-based DTMF translations.

Within the extended IMS architecture, two different types of session border controllers that integrate signal-
ing and media control play very important roles: the Access SBC and the Interconnect SBC. The integration 
of signaling and media control provides several architectural benefi ts:

 Security:  SBC prevents DoS attacks on core (IMS) elements by dynamically discovering and blocking 
malicious signaling and media attacks or nonmalicious overloads (e.g., endpoint re-registering very 
frequently). Advanced SBCs using hardware-based features, can protect themselves against attack 
without loss of service.

 Scalability:  SBC provides distributed edge processing function for signaling and media offl oading core 
(IMS) elements for connection and encryption management (e.g., TCP, TLS, IPSec), NAT traversal 
processing and other processor-intensive tasks.

 Manageability:  SBC incorporates multiple (IMS) functions resulting in fewer network elements, fewer 
networking protocols, and more robust fault and performance management (e.g., media QoS moni-
toring incorporated with session layer accounting).

The Interconnect Session Border Controller addresses the requirements at the boundary where different ser-
vice provider networks interconnect or “peer.” The controller integrates three functional elements from the 
ETSI TISPAN architecture [OUE200501].

 Interconnect Border Control Function (IBCF):  Provides overall control of the boundary between 
different service provider networks. It provides security for the IMS core in terms of signaling 
information by implementing a Topology Hiding Internetwork Gateway (THIG) subfunction. This 
subfunction performs signaling-based topology hiding, IPv4-IPv6 interworking, and session screen-
ing based upon source and destination signaling addresses. The IBCF also invokes the interworking 
function (described below) when connecting non-SIP or non-IPv6 networks, and performs admission 
control and bandwidth allocation using local policies or via interface to ETSI TISPAN Resource and 

•
•
•
•
•

1.
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Admission Control Subsystem (RACS). Lastly, the IBCF interacts with I-BGF (described below) 
for control of the boundary at the transport layers including pinhole fi rewall, NAPT, and numerous 
other features. 
 Interworking Function (IWF):  Provides signaling protocol interworking between the SIP-based 
IMS network and other service provider networks using H.323 or different SIP profi les.
 Interconnect Border Gateway Function (I-BGF):  Controls the transport boundary at layers 3 and 4 
between service provider networks. This function acts as a pinhole fi rewall and NAT device protect-
ing the service provider’s IMS core. It controls access by packet fi ltering on IP address/port and 
opening/closing gates (pinholes) into the network. It uses NAPT to hide the IP addresses/ports of the 
service elements in the IMS core. QoS packet marking, bandwidth and signaling rate policing, usage 
metering and QoS measurements for the media fl ows are additional features supported by the I-BGF.

The Access Session Border Controller satisfi es the requirements at the border where subscribers access the 
IMS core. It integrates two functional elements from the IMS and ETSI TISPAN architectures [OUE200501].

 Proxy-Call Session Control Function (P-CSCF): Is the SIP signaling contact point, the outbound/
inbound “proxy,” for subscribers within IMS as defi ned by 3GPP. However, the term “proxy” is 
deceiving since to fulfi ll its complete set of responsibilities it must be able to proactively initiate 
SIP requests. This requires implementation as a SIP Back-to-Back User Agent (SIP B2BUA), not 
a simple SIP proxy. The P-CSCF is responsible for forwarding SIP registration messages from 
the subscriber’s endpoint, the User Element (UE), in a visited network to the Interrogating-CSCF 
(I-CSCF) and subsequent call set-up requests and responses to the Serving-CSCF (S-CSCF). The 
P-CSCF maintains the mapping between logical subscriber SIP URI address and physical UE IP 
address and a security association, for both authentication and confi dentiality, with the UE us-
ing TLS for example. It supports emergency call (E911) local routing within the visited network, 
accounting, session timers, and admission control. Admission control requires an interface to an 
external IMS Policy Decision Function (PDF)/ESTI TISPAN RACS. The P-CSCF interacts with 
an Access Border Gateway Function (A-BGF) for control of the boundary at the transport layers 
including pinhole fi rewall, NAPT and numerous other features. In addition, for wireline networks, 
ETSI’s RACS is responsible for network-based NAT traversal.
 Access Border Gateway Function (A-BGF): Controls the transport boundary at layers 3 and 4 be-
tween subscribers and the service provider’s network. It performs all of the functions and features 
of the I-BGF. In addition, in wireline networks, it provides network-based NAT traversal for the 
media fl ows.

Session border controller product typically integrate signaling and media control in a single platform. Alter-
natively, session border control may be implemented using a distributed architecture using separate physical 
signaling and media control products for the three functional elements described above.

Figure 5.21 depicts, for illustrative purposes, an example of a commercial Session Border Controller; in 
this case the functionality runs parallel to the Gatekeeper [SYS200501]. In this example the Gateway/ Session 
Border Controller can operate in three ways:

Direct/static Mode to allow call resolution without Registration, Admission, or Status (RAS) mes-
sage control (RAS is a protocol used in the H.323 protocol suite for discovering and interacting 
with a Gatekeeper). This mode will allow number translation and dynamic call control given that 
the participating gateways support the canMapAlias attribute. 
Routed Mode to allow direct control of RAS messages with very low level of bandwidth utilization. 
This mode allows number translation and dynamic call control for gateways that do not support the 
canMapAlias attribute. 

2.

3.

1.

2.

1.

2.
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Proxy Mode to allow full RAS and RTP data transfer for gateways behind NAT or gateways that 
want to keep their identity. This bandwidth-intensive mode fully controls the RAS and Q.932 data 
streams and supports number translation and dynamic call control. 

Figure 5.22 depicts, for illustrative purposes, a more complete enterprise SIP VoIP application to illustrate 
how the various elements interplay (ETH Zurich’s PolyPhone environment) [LOR200501].

VoIP Carrier 
(Pure Play 

PSTN 

Intranet 

Internet Intranet 

Border Session 
Controller 

Border Session 
Controller 

Phone 

Phone 

Phone 

PC 

PC 

Phone 

Phone 

Gateway Gateway 
Firewall 

Firewall 

Remote  
Gatekeeper 

Local 
Gatekeeper 

Figure 5.21:  Gateway/session border controller example.

3.
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Home (FW, NAT) WLAN

sip.ethz.ch

sip.ethz.ch

Register on sip.ethz.ch

sip.ethz.ch

(sip.x.y@id.ethz.ch)

(sip.23528@sip-gw.ethz.ch)

(Contact 23.234.3.7)

sip.ethz.ch

TCP/IP (Wired)

SIP User Agent

PBXSIP-PBX
Gateway

SIP
Proxy

Voice
Mail

MEDIA
Proxy

SIP
Registrar

Web
Interface

WWW

INVITE
DNS SRV query
_sip_udp.id.ethz.ch

INVITE PRI/CAS
LDAPDNS

PermissionDB

LocationDB
Accounting

RADIUS

nethz

SIP Sessions

From the SDP specifi cation (RFC 2327): “A multimedia session is a set of multimedia senders and receivers and 
the data streams fl owing from senders to receivers. A multimedia conference is an example of a multimedia 
session.” (A session as defi ned for SDP can comprise one or more RTP sessions.) As defi ned, a callee can 
be invited several times, by different calls, to the same session. If SDP is used, a session is defi ned by the 
concatenation of the SDP user name, session id, network type, address type, and address elements in the origin 
fi eld. SIP supports stateless and stateful connections. A stateless proxy establishes the connection and then “gets 
out of the way.” A stateful proxy stores all signaling events for the duration of the call (some SIP proxy servers 
deposit cookies in the IP phone/terminal as a method of providing state information).

SIP Proxy

An intermediate device that receives SIP requests from a client and then initiates requests on the client’s behalf. 
The SIP proxy server provides similar functionality to a gatekeeper in an H.323 environment or a softswitch in an 
MGCP/MEGACO environment.

SIP Registrar

The default SER registrar where all active SIP clients are registered.

PeerPoint

A third party Border Gateway Controller is integrated to support NAT/Firewalled user agents and hide internal 
topology of SIP environment (Proxies, Gateways, Servers).

(Figure 5.22 continued on next page)
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LDAP nethz

Stores usernames, passwords, E-Mail (primary and aliases) and internal phone numbers. 

Lightweight Directory Access Protocol

An emerging software protocol for enabling anyone to locate organizations, individuals, and other resources such 
as fi les and devices in a network, whether on the Internet or on a corporate intranet. LDAP is a “lightweight” 
(smaller amount of code) version of DAP (Directory Access Protocol), which is part of X.500, a standard for 
directory services in a network.

PermissionDB

Stores phonenumbers, settings and permissions for users. In the near future, the PermissionDB will be integrated 
into the LDAP infrastructure.

Web-Interface

Instead of serweb, this implementation uses a custom website with interface to the SER proxy. In the future, the 
web interface may be integrated in the web interface of the existing LDAP services (n.ethz.ch). The web interface 
also gives useful information about this project and monitors the status of the environment components.

Radius

The following operations are authorized using the existing RADIUS server infrastructure:
Registration of SIP users (REGISTER)
Establishing calls using an n.ethz.ch digest header (INVITE)

Location DB, Accounting

The default SER Location DB. Accounting is only used for statistical purposes.

DNS

Domain Name Server of ethz.ch (any former e-mail could be resolved to a SIP account or an internal PSTN phone 
number.)

Gateways

Existing PSTN infrastructure has been integrated in the environment. Authorized SIP users can reach every 
internal and external phone.

Voice Mail

A voice mail-box system is available to the user.

TCP/IP (Wired)

The wired TCP/IP network of organization. Directly addressable IP numbers are used (no fi rewalls or number 
translation).

HOME (FW, NAT)

Infrastructure used by employees when at home or en route.

WLAN

The Wireless LAN infrastructure of the organization. For public users the WLAN allows only access to selected IP 
addresses inside the organization (e.g., the home page www.ethz.ch). Other addresses can only be reached after 
VPN validation. Since this is not currently possible with WLAN SIP phones, exceptional access to the SIP Server/
MEDIA Proxy has been granted. Phone registered on the SIP server will be able to establish connections to any 
other SIP phone on the Internet.

Figure 5.22: Example of an institutional SIP environment.

 

•
•
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C H A P T E R  6
Basic IPv6 Concepts

This chapter focuses on the description of Internet protocol version 6 ( IPv6). We introduced basic IPv6 con-
cepts in Chapter 1, and we have alluded to in the chapters that followed the advantages and motivations for 
considering IPv6 in the VoIP context. The discussion is based on IETF RFC 2460 [DEE199801]. There is an 
extensive body of technical research literature on this topic (as documented in Appendix B of Chapter 1) and 
only the most basic concepts are covered in this chapter.

6.1 Introduction
 IP version 6 (IPv6) is a new version of the Internet protocol, designed as the successor to IP version 4 (IPv4) 
described in RFC 791. The changes from IPv4 to IPv6 fall primarily into the following categories:

 Expanded addressing capabilities: IPv6 increases the IP address size from 32 bits to 128 bits, to sup-
port more levels of addressing hierarchy, a much greater number of addressable nodes, and simpler 
auto-confi guration of addresses. The scalability of multicast routing is improved by adding a 
“scope” fi eld to multicast addresses; and a new type of address, called an anycast address is defi ned 
and used to send a packet to any one of a group of nodes.

Header format simplifi cation: Some IPv4 header fi elds have been dropped or made optional, to reduce 
the common-case processing cost of packet handling and to limit the bandwidth cost of the IPv6 
header.

Improved support for extensions and options: Changes in the way IP header options are encoded allows 
for more effi cient forwarding, less stringent limits on the length of options, and greater fl exibility 
for introducing new options in the future.

 Flow labeling capability: A new capability is added to enable the labeling of packets belonging to par-
ticular traffi c “fl ows” for which the sender requests special handling, such as nondefault quality of 
service or “real-time” service.

Authentication and privacy capabilities: Extensions to support authentication, data integrity, and data 
confi dentiality (optional) are specifi ed for IPv6.

RFC 2460 specifi es the basic IPv6 header and the initially-defi ned IPv6 extension headers and options. It 
also discusses packet size issues, the semantics of fl ow labels and traffi c classes, and the effects of IPv6 on 
upper-layer protocols. The format and semantics of IPv6 addresses are specifi ed separately in RFC 2373 
(now obsoleted by RFC 3513). The IPv6 version of ICMP, which all IPv6 implementations are required to 
include, is specifi ed in ICMPv6 (RFC 2483). Developers should refer directly to all relevant IETF RFCs for 
normative guidelines.

6.2 Terminology
The following nomenclature is used in the standard:

 Node:  A device that implements IPv6.
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 Router:  A node that forwards IPv6 packets and is not explicitly addressed to itself. (See note below).
 Host:  Any node that is not a router. (See note below).
 Upper layer:  A protocol layer immediately above IPv6. Examples are transport protocols such as TCP 

and UDP, control protocols such as ICMP, routing protocols such as OSPF, and Internet or lower-layer 
protocols being “tunneled” over (i.e., encapsulated in) IPv6 such as IPX, AppleTalk, or IPv6 itself.

 Link:  A communication facility or medium over which nodes can communicate at the link layer, i.e., 
the layer immediately below IPv6. Examples are Ethernets (simple or bridged); PPP links; X.25, 
Frame Relay, or ATM networks; and Internet (or higher) layer “tunnels,” such as tunnels over IPv4 
or IPv6 itself.

 Neighbors:  Nodes attached to the same link.
 Interface:  A node’s attachment to a link.
 Address:  An IPv6-layer identifi er for an interface or a set of interfaces.
 Packet:  An IPv6 header plus payload.
 Link MTU: The maximum transmission unit, that is, maximum packet size in octets, that can be con-

veyed over a link.
 Path MTU:  The minimum link MTU of all the links in a path between a source node and a destination node.
Note: It is possible, though unusual, for a device with multiple interfaces to be confi gured to forward non-
self-destined packets arriving from some set (fewer than all) of its interfaces, and to discard nonself-destined 
packets arriving from its other interfaces. Such a device must obey the protocol requirements for routers when 
receiving packets from, and interacting with neighbors over, the former (forwarding) interfaces. It must obey 
the protocol requirements for hosts when receiving packets from, and interacting with neighbors over, the lat-
ter (nonforwarding) interfaces.

6.3   IPv6 Header Format
Figure 6.1 depicts the IPv6 Header format.

Version Traffic Class 

Payload Length 

Source Address 

Destination Address 

Next Header Hop Limit 

Flow Label 

Figure 6.1: IPv6 header format.

The fi elds in the header have the following meanings:

Version: 4-bit Internet protocol version number = 6.
Traffi c class: 8-bit traffi c class fi eld. See Section 6.7.
Flow label: 20-bit fl ow label. See Section 6.6.
Payload Length: 16-bit unsigned integer. Length of the IPv6 payload, i.e., the rest of the packet fol-

lowing this IPv6 header, in octets. (Note that any extension headers [Section 6.4] present are 
considered part of the payload, i.e., included in the length count.)
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Next Header: 8-bit selector. Identifi es the type of header immediately following the IPv6 header. Uses 
the same values as the IPv4 Protocol fi eld.

Hop Limit: 8-bit unsigned integer. Decremented by one by each node that forwards the packet. The 
packet is discarded if Hop Limit is decremented to zero.

Source Address: 128-bit address of the originator of the packet. This is covered later in more detail.
Destination Address: 128-bit address of the intended recipient of the packet (possibly not the ultimate 

recipient, if a Routing header is present). 

6.4   IPv6 Extension Headers
In IPv6, optional Internet-layer information is encoded in separate headers that may be placed between the 
IPv6 header and the upper-layer header in a packet. There are a small number of such extension headers, each 
identifi ed by a distinct Next Header value. As illustrated in the examples in Figure 6.2, an IPv6 packet may 
carry zero, one, or more extension headers, each identifi ed by the Next Header fi eld of the preceding header:

IPv6 Header 
Next Header = 

Routing 

Routing Header 
Next Header = 

Fragment 

Fragment Header 
Next Header = 

TCP 

Fragment of TCP 
Header + Data 

IPv6 Header 
Next Header = 

Routing 

Routing Header 
Next Header = 

TCP 

TCP Header + Data 

IPv6 Header 
Next Header = 

TCP 

TCP Header + Data 

. .

. .

. .

. .

. .

. .

Figure 6.2: Examples of extension headers.

With one exception, extension headers are not examined or processed by any node along a packet’s delivery 
path, until the packet reaches the node (or each of the set of nodes, in the case of multicast) identifi ed in the 
Destination Address fi eld of the IPv6 header. There, normal demultiplexing on the Next Header fi eld of the 
IPv6 header invokes the module to process the fi rst extension header, or the upper-layer header if no exten-
sion header is present. The contents and semantics of each extension header determine whether or not to 
proceed to the next header. Therefore, extension headers must be processed strictly in the order they appear 
in the packet; a receiver must not, for example, scan through a packet looking for a particular kind of exten-
sion header and process that header prior to processing all preceding ones.

The exception referred to in the preceding paragraph is the Hop-by-Hop Options header, which carries in-
formation that must be examined and processed by every node along a packet’s delivery path, including the 
source and destination nodes. The Hop-by-Hop Options header, when present, must immediately follow the 
IPv6 header. Its presence is indicated by the value zero in the Next Header fi eld of the IPv6 header.

If, as a result of processing a header, a node is required to proceed to the next header but the Next Header 
value in the current header is unrecognized by the node, it should discard the packet and send an ICMP 
Parameter Problem message to the source of the packet, with an ICMP Code value of 1 (“unrecognized 
Next Header type encountered”) and the ICMP Pointer fi eld containing the offset of the unrecognized value 
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within the original packet. The same action should be taken if a node encounters a Next Header value of zero 
in any header other than an IPv6 header.

Each extension header is an integer multiple of 8 octets long, in order to retain 8-octet alignment for subse-
quent headers. Multioctet fi elds within each extension header are aligned on their natural boundaries, i.e., fi elds 
of width n octets are placed at an integer multiple of n octets from the start of the header, for n = 1, 2, 4, or 8.

A full implementation of IPv6 includes implementation of the following extension headers:

Hop-by-hop Options
Routing (Type 0)
Fragment
Destination Options
Authentication
Encapsulating security payload

The fi rst four are specifi ed in this RFC; the last two are specifi ed in RFC 2402 and RFC 2406, respectively.

6.4.1  Extension Header Order
When more than one extension header is used in the same packet, it is recommended that those headers ap-
pear in the following order:

IPv6 header
Hop-by-Hop Options header
Destination Options header (Note 1)
Routing header
Fragment header
Authentication header (Note 2)
Encapsulating Security Payload header (note 2)
Destination Options header (Note 3)
Upper-layer header

Note 1:  For options to be processed by the fi rst destination that appears in the IPv6 Destination Address fi eld 
plus subsequent destinations listed in the Routing header.

Note 2:  Additional recommendations regarding the relative order of the Authentication and Encapsulating 
Security Payload headers are given in RFC 2406.

Note 3:  For options to be processed only by the fi nal destination of the packet.

Each extension header should occur at most once, except for the Destination Options header which should 
occur at most twice (once before a Routing header and once before the upper-layer header).

If the upper-layer header is another IPv6 header (in the case of IPv6 being tunneled over or encapsulated in 
IPv6), it may be followed by its own extension headers, which are separately subject to the same ordering 
recommendations.

If and when other extension headers are defi ned, their ordering constraints relative to the above listed head-
ers must be specifi ed.

IPv6 nodes must accept and attempt to process extension headers in any order and occurring any number of 
times in the same packet, except for the Hop-by-Hop Options header which is restricted to appear immedi-
ately after an IPv6 header only. Nonetheless, it is strongly advised that sources of IPv6 packets adhere to the 
above recommended order until and unless subsequent specifi cations revise that recommendation.

•
•
•
•
•
•

1.
2.
3.
4.
5.
6.
7.
8.
9.
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6.4.2  Options
Two of the currently-defi ned extension headers—the Hop-by-Hop Options header and the Destination Options 
header—carry a variable number of type-length-value (TLV) encoded “options”, of the format shown in 
Figure 6.3.

Option Type Option Data Len Option Data 

. .

. .

Figure 6.3: Extension headers options.

Option Type: 8-bit identifi er of the type of option.
Opt Data Len: 8-bit unsigned integer. Length of the Option Data fi eld of this option, in octets.
Option Data: Variable-length fi eld. Option-Type-specifi c data.

The sequence of options within a header must be processed strictly in the order they appear in the header; a 
receiver must not, for example, scan through the header looking for a particular kind of option and process 
that option prior to processing all preceding ones.

The Option Type identifi ers are internally encoded such that their highest-order two bits specify the action 
that must be taken if the processing IPv6 node does not recognize the Option Type:

00:  Skip over this option and continue processing the header.
01:  Discard the packet.
10:  Discard the packet and, regardless of whether or not the packet’s Destination Address was a multi-

cast address, send an ICMP Parameter Problem, Code 2, message to the packet’s Source Address, 
pointing to the unrecognized Option Type.

11:  Discard the packet and, only if the packet’s Destination Address was not a multicast address, send 
an ICMP Parameter Problem, Code 2, message to the packet’s Source Address, pointing to the 
unrecognized Option Type.

The third-highest-order bit of the Option Type specifi es whether or not the Option Data of that option can 
change en-route to the packet’s fi nal destination. When an Authentication header is present in the packet, 
for any option whose data may change en-route, its entire Option Data fi eld must be treated as zero-valued 
octets when computing or verifying the packet’s authenticating value.

0:  Option Data does not change en-route.
1:  Option Data may change en-route.

The three high-order bits described previously are to be treated as part of the Option Type, not independent 
of the Option Type. That is, a particular option is identifi ed by a full 8-bit Option Type, not just the low-or-
der 5 bits of an Option Type.

The same Option Type numbering space is used for both the Hop-by-Hop Options header and the Destina-
tion Options header; however, the specifi cation of a particular option may restrict its use to only one of those 
two headers.

Individual options may have specifi c alignment requirements, to ensure that multioctet values within Option 
Data fi elds fall on natural boundaries. The alignment requirement of an option is specifi ed using the notation 
xn + y, meaning the Option Type must appear at an integer multiple of x octets from the start of the header, 
plus y octets. For example:

2n:  Means any 2-octet offset from the start of the header; 
8n+2:  Means any 8-octet offset from the start of the header, plus 2 octets.
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There are two padding options that are used when necessary to align subsequent options and to pad out the 
containing header to a multiple of 8 octets in length. These padding options must be recognized by all IPv6 
implementations:

Pad1 option (alignment requirement: none)

      +-+-+-+-+-+-+-+-+
      |       0       |
      +-+-+-+-+-+-+-+-+

Note: the format of the Pad1 option is a special case—it does not have length and value fi elds.

The Pad1 option is used to insert one octet of padding into the Options area of a header. If more than one octet 
of padding is required, the PadN option, described next, should be used, rather than multiple Pad1 options.

PadN option (alignment requirement: none)

      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- - - - - - - - -
      |       1       |  Opt Data Len |  Option Data
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- - - - - - - - -

The PadN option is used to insert two or more octets of padding into the Options area of a header. For N 
octets of padding, the Opt Data Len fi eld contains the value N – 2, and the Option Data consists of N – 2 
zero-valued octets.

Section 6.10 contains formatting guidelines for designing new options.

6.4.3  Hop-by-Hop Options Header
The Hop-by-Hop Options header is used to carry optional information that must be examined by every node 
along a packet’s delivery path. The Hop-by-Hop Options header is identifi ed by a Next Header value of 0 in 
the IPv6 header, and has the format of Figure 6.4.

Next Header Hdr Ext Len 

Options 

Figure 6.4: Hop-by-Hop options header.

The fi elds are as follows:

 Next Header:  8-bit selector. Identifi es the type of header immediately following the Hop-by-Hop Op-
tions header. Uses the same values as the IPv4 Protocol fi eld (RFC 1700 et seq).

Hdr Ext Len:  8-bit unsigned integer. Length of the Hop-by-Hop Options header in 8-octet units, not 
including the fi rst 8 octets.
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Options:  Variable-length fi eld, of length such that the complete Hop-by-Hop Options header is an integer 
multiple of 8 octets long. Contains one or more TLV-encoded options, as described in Section 6.4.2.

The only hop-by-hop options defi ned in this RFC are the Pad1 and PadN options specifi ed in Section 6.4.2.

6.4.4  Routing Header
The Routing header is used by an IPv6 source to list one or more intermediate nodes to be “visited” on the 
way to a packet’s destination. This function is very similar to IPv4’s Loose Source and Record Route option. 
The Routing header is identifi ed by a Next Header value of 43 in the immediately preceding header, and has 
the format of Figure 6.5.

Next Header Hdr Ext Len Routing Type Segments Left 

Type-Specific Data 

Figure 6.5: Routing header.

The fi elds are as follows:

Next Header:  8-bit selector. Identifi es the type of header immediately following the Routing header. 
Uses the same values as the IPv4 Protocol fi eld (RFC 1700).

Hdr Ext Len:  8-bit unsigned integer. Length of the Routing header in 8-octet units, not including the 
fi rst 8 octets.

 Routing Type:  8-bit identifi er of a particular Routing header variant.
Segments Left:  8-bit unsigned integer. Number of route segments remaining, i.e., number of explicitly 

listed intermediate nodes still to be visited before reaching the fi nal destination.
Type-specifi c data:  Variable-length fi eld, of format determined by the Routing Type, and of length such 

that the complete Routing header is an integer multiple of 8 octets long.

If, while processing a received packet, a node encounters a Routing header with an unrecognized Routing 
Type value, the required behavior of the node depends on the value of the Segments Left fi eld, as follows:

If Segments Left is zero, the node must ignore the Routing header and proceed to process the next header in 
the packet, whose type is identifi ed by the Next Header fi eld in the Routing header.

If Segments Left is nonzero, the node must discard the packet and send an ICMP Parameter Problem, Code 
0, message to the packet’s Source Address, pointing to the unrecognized Routing Type.

If, after processing a Routing header of a received packet, an intermediate node determines that the packet 
is to be forwarded onto a link whose link MTU is less than the size of the packet, the node must discard the 
packet and send an ICMP Packet Too Big message to the packet’s Source Address.

The Type 0 Routing header has the format shown in Figure 6.6.
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Next Header Hdr Ext Len Routing Type=0 Segments Left 

Reserved 

Address[1] 

Address[2] 

. 

. 

. 

Address[n] 

Figure 6.6: Type 0 routing header.

The fi elds are as follows:

Next Header:  8-bit selector. Identifi es the type of header immediately following the Routing header. 
Uses the same values as the IPv4 Protocol fi eld (RFC 1700).

Hdr Ext Len:  8-bit unsigned integer. Length of the Routing header in 8-octet units, not including the 
fi rst 8 octets. For the Type 0 Routing header, Hdr Ext Len is equal to two times the number ofad-
dresses in the header.

Routing Type:  0.
Segments Left:  8-bit unsigned integer. Number of route segments remaining, i.e., number of explicitly 

listed intermediate nodes still to be visited before reaching the fi nal destination.
Reserved:  32-bit reserved fi eld. Initialized to zero for transmission; ignored on reception.
Address[1, 2, …, n]:  Vector of 128-bit addresses, numbered 1 to n.

Multicast addresses must not appear in a Routing header of Type 0, or in the IPv6 Destination Address fi eld 
of a packet carrying a Routing header of Type 0.

A Routing header is not examined or processed until it reaches the node identifi ed in the Destination 
Address fi eld of the IPv6 header. In that node, dispatching on the Next Header fi eld of the immediately 
preceding header causes the Routing header module to be invoked, which, in the case of Routing Type 0, 
performs the following algorithm:
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   if Segments Left = 0 {
      proceed to process the next header in the packet, whose type is
      identified by the Next Header field in the Routing header
   }
   else if Hdr Ext Len is odd {
         send an ICMP Parameter Problem, Code 0, message to the Source
         Address, pointing to the Hdr Ext Len field, and discard the
         packet
   }
   else {
      compute n, the number of addresses in the Routing header, by
      dividing Hdr Ext Len by 2

      if Segments Left is greater than n {
         send an ICMP Parameter Problem, Code 0, message to the Source
         Address, pointing to the Segments Left field, and discard the
         packet
      }
      else {
         decrement Segments Left by 1;
         compute i, the index of the next address to be visited in
         the address vector, by subtracting Segments Left from n

         if Address [i] or the IPv6 Destination Address is multicast {
            discard the packet
         }
         else {
            swap the IPv6 Destination Address and Address[i]

            if the IPv6 Hop Limit is less than or equal to 1 {
               send an ICMP Time Exceeded—Hop Limit Exceeded in
               Transit message to the Source Address and discard the
               packet
            }
            else {
               decrement the Hop Limit by 1

               resubmit the packet to the IPv6 module for transmission
               to the new destination
            }
         }
      }
   }

As an example of the effects of the above algorithm, consider the case of a source node S sending a packet 
to destination node D, using a Routing header to cause the packet to be routed via intermediate nodes I1, 
I2, and I3. The values of the relevant IPv6 header and Routing header fi elds on each segment of the delivery 
path would be as follows:
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As the packet travels from S to I1:

        Source Address = S                  Hdr Ext Len = 6
        Destination Address = I1            Segments Left = 3
                                            Address[1] = I2
                                            Address[2] = I3
                                            Address[3] = D

As the packet travels from I1 to I2:

        Source Address = S                  Hdr Ext Len = 6
        Destination Address = I2            Segments Left = 2
                                            Address[1] = I1
                                            Address[2] = I3
                                            Address[3] = D

As the packet travels from I2 to I3:

        Source Address = S                  Hdr Ext Len = 6
        Destination Address = I3            Segments Left = 1
                                            Address[1] = I1
                                            Address[2] = I2
                                            Address[3] = D

As the packet travels from I3 to D:

        Source Address = S                  Hdr Ext Len = 6
        Destination Address = D             Segments Left = 0
                                            Address[1] = I1
                                            Address[2] = I2
                                            Address[3] = I3

6.4.5  Fragment Header
The Fragment header is used by an IPv6 source to send a packet larger than would fi t in the path MTU to 
its destination. (Note: unlike IPv4, fragmentation in IPv6 is performed only by source nodes, not by routers 
along a packet’s delivery path—see Section 6.5.)  The Fragment header is identifi ed by a Next Header value 
of 44 in the immediately preceding header, and has the format shown in Figure 6.7

Next Header Reserved Fragment Offset Res   M 

Identification 

Figure 6.7: Fragment header.

The fi elds are as follows:

Next Header:  8-bit selector. Identifi es the initial header type of the Fragmentable Part of the original 
packet (defi ned below). Uses the same values as the IPv4 Protocol fi eld (RFC 1700).

Reserved:  8-bit reserved fi eld. Initialized to zero for transmission; ignored on reception.
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Fragment Offset: 13-bit unsigned integer. The offset, in 8-octet units, of the data following this header, 
relative to the start of the Fragmentable Part of the original packet.

Res:  2-bit reserved fi eld. Initialized to zero for transmission; ignored on reception.
M fl ag:  1 = more fragments; 0 = last fragment.
Identifi cation:  32 bits. See description below.

In order to send a packet that is too large to fi t in the MTU of the path to its destination, a source node may 
divide the packet into fragments and send each fragment as a separate packet, to be reassembled at the receiver.

For every packet that is to be fragmented, the source node generates an Identifi cation value. The Identifi ca-
tion must be different than that of any other fragmented packet sent recently* with the same Source Address 
and Destination Address. If a Routing header is present, the Destination Address of concern is that of the 
fi nal destination.

The initial, large, unfragmented packet is referred to as the “original packet,” and it is considered to consist 
of two parts, as see in Figure 6.8.

Unfragmentable 
Part 

Fragmentable 
Part 

Orginal Packet: 

Figure 6.8: Original packet.

The Unfragmentable Part consists of the IPv6 header plus any extension headers that must be processed by 
nodes en route to the destination, that is, all headers up to and including the Routing header if present, else 
the  Hop-by-Hop Options header if present, else no extension headers.

The Fragmentable Part consists of the rest of the packet, that is, any extension headers that need be pro-
cessed only by the fi nal destination node(s), plus the upper-layer header and data.

The Fragmentable Part of the original packet is divided into fragments, each, except possibly the last (“right-
most”) one, being an integer multiple of 8 octets long. The fragments are transmitted in separate “fragment 
packets” as illustrated in Figure 6.9.

* “recently” means within the maximum likely lifetime of a packet, including transit time from source to destination and time spent 
awaiting reassembly with other fragments of the same packet. However, it is not required that a source node know the maximum 
packet lifetime. Rather, it is assumed that the requirement can be met by maintaining the Identifi cation value as a simple, 32- bit, 
“wrap-around” counter, incremented each time a packet must be fragmented. It is an implementation choice whether to maintain a 
single counter for the node or multiple counters, e.g., one for each of the node’s possible source addresses, or one for each active 
(source address, destination address) combination.
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Unfragmentable 
Part 

First 
Fragment 

Second 
Fragment . . . . 

Last 
Fragment 

Orginal Packet: 

Unfragmentable 
Part 

Fragment 
Header 

First 
Fragment 

Unfragmentable 
Part 

Fragment 
Header 

. 

. 

. 

Second 
Fragment 

Unfragmentable 
Part 

Fragment 
Header 

Last 
Fragment 

Fragment Packets: 

Figure 6.9: Fragmentable parts.

Each  fragment packet is composed of:

1. The Unfragmentable Part of the original packet, with the Payload Length of the original IPv6 
header changed to contain the length of this fragment packet only (excluding the length of the IPv6 
header itself), and the Next Header fi eld of the last header of the Unfragmentable Part changed to 44.

2. A Fragment header containing:
• The Next Header value that identifi es the fi rst header of the Fragmentable Part of the original packet.
• A Fragment Offset containing the offset of the fragment, in 8-octet units, relative to the start of 

the Fragmentable Part of the original packet. The Fragment Offset of the fi rst (“leftmost”) frag-
ment is 0.

• An M fl ag value of 0 if the fragment is the last (“rightmost”) one, else an M fl ag value of 1.
• The Identifi cation value generated for the original packet.

3. The fragment itself.

The lengths of the fragments must be chosen such that the resulting fragment packets fi t within the MTU of 
the path to the packets’ destination(s).

At the destination, fragment packets are reassembled into their original, unfragmented form, as illustrated in 
Figure 6.10.
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Unfragmentable 
Part 

Fragmentable 
Part 

Reassembled Orginal Packet: 

Figure 6.10: Reassembled original packet.

The following rules govern  reassembly:

An original packet is reassembled only from fragment packets that have the same Source Address, 
Destination Address, and Fragment Identifi cation.
The Unfragmentable Part of the reassembled packet consists of all headers up to, but not including, 
the Fragment header of the fi rst fragment packet (that is, the packet whose Fragment Offset is zero), 
with the following two changes:

The Next Header fi eld of the last header of the Unfragmentable Part is obtained from the Next 
Header fi eld of the fi rst fragment’s Fragment header.
The Payload Length of the reassembled packet is computed from the length of the Unfrag-
mentable Part and the length and offset of the last fragment. For example, a formula for 
computing the Payload Length of the reassembled original packet is:
PL.orig = PL.fi rst - FL.fi rst – 8 + (8 * FO.last) + FL.last
 where,
 PL.orig = Payload Length fi eld of reassembled packet.
 PL.fi rst = Payload Length fi eld of fi rst fragment packet.
 FL.fi rst = length of fragment following Fragment header of fi rst fragment packet.
 FO.last = Fragment Offset fi eld of Fragment header of last fragment packet.
 FL.last  = length of fragment following Fragment header ofl ast fragment packet.

The Fragmentable Part of the reassembled packet is constructed from the fragments following the Fragment 
headers in each of the fragment packets. The length of each fragment is computed by subtracting from the 
packet’s Payload Length the length of the headers between the IPv6 header and fragment itself; its relative 
position in Fragmentable Part is computed from its Fragment Offset value.

The Fragment header is not present in the fi nal, reassembled packet.

The following error conditions may arise when reassembling fragmented packets:

If insuffi cient fragments are received to complete reassembly of a packet within 60 seconds of the 
reception of the fi rst-arriving fragment of that packet, reassembly of that packet must be abandoned 
and all the fragments that have been received for that packet must be discarded. If the fi rst fragment 
(i.e., the one with a Fragment Offset of zero) has been received, an ICMP Time Exceeded—Frag-
ment Reassembly Time Exceeded message should be sent to the source of that fragment.
If the length of a fragment, as derived from the fragment packet’s Payload Length fi eld, is not a 
multiple of 8 octets and the M fl ag of that fragment is 1, then that fragment must be discarded and 
an ICMP Parameter Problem, Code 0, message should be sent to the source of the fragment, point-
ing to the Payload Length fi eld of the fragment packet.
If the length and offset of a fragment are such that the Payload Length of the packet reassembled 
from that fragment would exceed 65,535 octets, then that fragment must be discarded and an ICMP 
Parameter Problem, Code 0, message should be sent to the source of the fragment, pointing to the 
Fragment Offset fi eld of the fragment packet.

•

•

1.

2.

•

•

•
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The following conditions are not expected to occur, but are not considered errors if they do:

The number and content of the headers preceding the Fragment header of different fragments of the 
same original packet may differ. Whatever headers are present, preceding the Fragment header in each 
fragment packet, are processed when the packets arrive, prior to queueing the fragments for reassem-
bly. Only those headers in the Offset zero fragment packet are retained in the reassembled packet.
The Next Header values in the Fragment headers of different fragments of the same original packet 
may differ. Only the value from the Offset zero fragment packet is used for reassembly.

6.4.6  Destination Options Header
The Destination Options header is used to carry optional information that need be examined only by a 
packet’s destination node(s). The Destination Options header is identifi ed by a Next Header value of 60 in 
the immediately preceding header, and has the format shown in Figure 6.11.

Next Header Hdr Ext Len 

Options 

Figure 6.11: Destination Options Header.

Next Header:  8-bit selector. Identifi es the type of header immediately following the Destination Op-
tions header. Uses the same values as the IPv4 Protocol fi eld (RFC 1700)

Hdr Ext Len:  8-bit unsigned integer. Length of the Destination Options header in 8-octet units, not 
including the fi rst 8 octets.

Options:  Variable-length fi eld, of length such that the complete Destination Options header is an integer 
multiple of 8 octets long. Contains one or more TLV-encoded options, as described in section 6.4.2.

The only destination options defi ned in this RFC are the Pad1 and PadN options specifi ed in section 6.4.2.

Note that there are two possible ways to encode optional destination information in an IPv6 packet: either 
as an option in the Destination Options header, or as a separate extension header. The Fragment header and 
the Authentication header are examples of the latter approach. Which approach can be used depends on what 
action is desired of a destination node that does not understand the optional information:

If the desired action is for the destination node to discard the packet and, only if the packet’s 
Destination Address is not a multicast address, send an ICMP Unrecognized Type message to the 
packet’s Source Address, then the information may be encoded either as a separate header or as an 
option in the Destination Options header whose Option Type has the value 11 in its highest-order 
two bits. The choice may depend on such factors as which takes fewer octets, or which yields better 
alignment or more effi cient parsing.
If any other action is desired, the information must be encoded as an option in the Destination Op-
tions header whose Option Type has the value 00, 01, or 10 in its highest-order two bits, specifying 
the desired action (see section 6.4.2).

6.4.7 No Next Header
The value 59 in the Next Header fi eld of an IPv6 header or any extension header indicates that there is noth-
ing following that header. If the Payload Length fi eld of the IPv6 header indicates the presence of octets 

•

•

•

•
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past the end of a header whose Next Header fi eld contains 59, those octets must be ignored, and passed on 
unchanged if the packet is forwarded.

6.5  Packet Size Issues
IPv6 requires that every link in the Internet have an MTU of 1280 octets or greater. On any link that cannot 
convey a 1280-octet packet in one piece, link-specifi c fragmentation and reassembly must be provided at a 
layer below IPv6.

Links that have a confi gurable MTU (for example, PPP links defi ned in RFC 1661] must be confi gured to have 
an MTU of at least 1280 octets; it is recommended that they be confi gured with an MTU of 1500 octets or 
greater, to accommodate possible encapsulations (i.e., tunneling) without incurring IPv6-layer fragmentation.

From each link to which a node is directly attached, the node must be able to accept packets as large as that 
link’s MTU.

It is strongly recommended that IPv6 nodes implement Path MTU Discovery (RFC 1981), in order to 
discover and take advantage of path MTUs greater than 1280 octets. However, a minimal IPv6 implementa-
tion (e.g., in a boot ROM) may simply restrict itself to sending packets no larger than 1280 octets, and omit 
implementation of Path MTU Discovery.

In order to send a packet larger than a path’s MTU, a node may use the IPv6 Fragment header to fragment 
the packet at the source and have it reassembled at the destination(s). However, the use of such fragmenta-
tion is discouraged in any application that is able to adjust its packets to fi t the measured path MTU (i.e., 
down to 1280 octets).

A node must be able to accept a fragmented packet that, after reassembly, is as large as 1500 octets. A node 
is permitted to accept fragmented packets that reassemble to more than 1500 octets. An upper-layer protocol 
or application that depends on IPv6 fragmentation to send packets larger than the MTU of a path should not 
send packets larger than 1500 octets unless it has assurance that the destination is capable of reassembling 
packets of that larger size.

In response to an IPv6 packet that is sent to an IPv4 destination (i.e., a packet that undergoes translation 
from IPv6 to IPv4), the originating IPv6 node may receive an ICMP Packet Too Big message reporting a 
Next-Hop MTU less than 1280. In that case, the IPv6 node is not required to reduce the size of subsequent 
packets to less than 1280, but must include a Fragment header in those packets so that the IPv6-to-IPv4 
translating router can obtain a suitable Identifi cation value to use in resulting IPv4 fragments. Note that this 
means the payload may have to be reduced to 1232 octets (1280 minus 40 for the IPv6 header and 8 for the 
Fragment header), and smaller still if additional extension headers are used.

6.6  Flow Labels
The 20-bit Flow Label fi eld in the IPv6 header may be used by a source to label sequences of packets for 
which it requests special handling by the IPv6 routers, such as nondefault quality of service or “real-time” 
service. This aspect of IPv6 is still experimental to a large degree and subject to change as the requirements 
for fl ow support in the Internet become clearer (RFC 3697, March 2004 and RFC 3595 September 2003 
provide some current thinking on the topic.)  Hosts or routers that do not support the functions of the Flow 
Label fi eld are required to set the fi eld to zero when originating a packet, pass the fi eld on unchanged when 
forwarding a packet, and ignore the fi eld when receiving a packet.

Section 6.9 describes the current intended semantics and usage of the Flow Label fi eld.
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6.7  Traffi c Classes
The 8-bit Traffi c Class fi eld in the IPv6 header is available for use by originating nodes and/or forwarding 
routers to identify and distinguish between different classes or priorities of IPv6 packets. At the point in time 
at which this specifi cation is being written, there are a number of experiments underway in the use of the 
IPv4 Type of Service and/or Precedence bits to provide various forms of “differentiated service” for IP pack-
ets, other than through the use of explicit fl ow set-up. The Traffi c Class fi eld in the IPv6 header is intended 
to allow similar functionality to be supported in IPv6.

The expectation is that experimentation will eventually lead to agreement on what sorts of traffi c classifi cations 
are most useful for IP packets. Detailed defi nitions of the syntax and semantics of all or some of the IPv6 Traffi c 
Class bits, whether experimental or intended for eventual standardization, are to be provided in separate documents.

The following general requirements apply to the Traffi c Class fi eld:

The service interface to the IPv6 service within a node must provide a means for an upper-layer 
protocol to supply the value of the Traffi c Class bits in packets originated by that upper- layer pro-
tocol. The default value must be zero for all 8 bits.
Nodes that support a specifi c (experimental or eventual standard) use of some or all of the Traffi c 
Class bits are permitted to change the value of those bits in packets that they originate, forward, or 
receive, as required for that specifi c use. Nodes should ignore and leave unchanged any bits of the 
Traffi c Class fi eld for which they do not support a specifi c use.
An upper-layer protocol must not assume that the value of the Traffi c Class bits in a received packet 
are the same as the value sent by the packet’s source.

6.8  Upper-Layer Protocol Issues

6.8.1 Upper-Layer Checksums
Any transport or other upper-layer protocol that includes the addresses from the IP header in its checksum 
computation must be modifi ed for use over IPv6, to include the 128-bit IPv6 addresses instead of 32-bit IPv4 
addresses. In particular, Figure 6.12 shows the TCP and UDP “pseudo-header” for IPv6:

Zero Next Header 

Upper-Layer Packet Length 

Source Address 

Destination Address 

Figure 6.12: TCP and UDP “pseudo-header” for IPv6.

•

•

•
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If the IPv6 packet contains a Routing header, the Destination Address used in the pseudo-header is that 
of the fi nal destination. At the originating node, that address will be in the last element of the Routing 
header; at the recipient(s), that address will be in the Destination Address fi eld of the IPv6 header.
The Next Header value in the pseudo-header identifi es the upper-layer protocol (e.g., 6 for TCP, 
or 17 for UDP). It will differ from the Next Header value in the IPv6 header if there are extension 
headers between the IPv6 header and the upper- layer header.
The Upper-Layer Packet Length in the pseudo-header is the length of the upper-layer header and 
data (e.g., TCP header plus TCP data). Some upper-layer protocols carry their own length informa-
tion (e.g., the Length fi eld in the UDP header); for such protocols, that is the length used in the 
pseudo- header. Other protocols (such as TCP) do not carry their own length information, in which 
case the length used in the pseudo-header is the Payload Length from the IPv6 header, minus the 
length of any extension headers present between the IPv6 header and the upper-layer header.
Unlike IPv4, when UDP packets are originated by an IPv6 node, the UDP checksum is not op-
tional. That is, whenever originating a UDP packet, an IPv6 node must compute a UDP checksum 
over the packet and the pseudo-header, and, if that computation yields a result of zero, it must be 
changed to hex FFFF for placement in the UDP header. IPv6 receivers must discard UDP packets 
containing a zero checksum, and should log the error.

The IPv6 version of ICMP includes the above pseudo-header in its checksum computation; this is a change 
from the IPv4 version of ICMP, which does not include a pseudo-header in its checksum. The reason for 
the change is to protect ICMP from misdelivery or corruption of those fi elds of the IPv6 header on which it 
depends, which, unlike IPv4, are not covered by an internet-layer checksum. The Next Header fi eld in the 
pseudo-header for ICMP contains the value 58, which identifi es the IPv6 version of ICMP.

6.8.2  Maximum Packet Lifetime
Unlike IPv4, IPv6 nodes are not required to enforce maximum packet lifetime. That is the reason the IPv4 
“Time to Live” fi eld was renamed “Hop Limit” in IPv6. In practice, very few, if any, IPv4 implementations 
conform to the requirement that they limit packet lifetime, so this is not a change in practice. Any upper-
layer protocol that relies on the internet layer (whether IPv4 or IPv6) to limit packet lifetime ought to be 
upgraded to provide its own mechanisms for detecting and discarding obsolete packets.

6.8.3  Maximum Upper-Layer Payload Size
When computing the maximum payload size available for upper-layer data, an upper-layer protocol must 
take into account the larger size of the IPv6 header relative to the IPv4 header. For example, in IPv4, TCP’s 
Maximum Segment Size (MSS) option is computed as the maximum packet size (a default value or a value 
learned through Path MTU Discovery) minus 40 octets (20 octets for the minimum-length IPv4 header and 
20 octets for the minimum-length TCP header). When using TCP over IPv6, the MSS must be computed as 
the maximum packet size minus 60 octets, because the minimum-length IPv6 header (i.e., an IPv6 header 
with no extension headers) is 20 octets longer than a minimum-length IPv4 header.

6.8.4 Responding to Packets Carrying Routing Headers
When an upper-layer protocol sends one or more packets in response to a received packet that included a Routing 
header, the response packet(s) must not include a Routing header that was automatically derived by “reversing” 
the received Routing header UNLESS the integrity and authenticity of the received Source Address and Routing 
header have been verifi ed (e.g., via the use of an Authentication header in the received packet). In other words, 
only the following kinds of packets are permitted in response to a received packet bearing a Routing header:

Response packets that do not carry Routing headers.

•

•

•

•

•
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Response packets that carry Routing headers that were NOT derived by reversing the Routing 
header of the received packet (for example, a Routing header supplied by local confi guration).
Response packets that carry Routing headers that were derived by reversing the Routing header 
of the received packet IF AND ONLY IF the integrity and authenticity of the Source Address and 
Routing header from the received packet have been verifi ed by the responder.

6.9 Semantics and Usage of the  Flow Label Field
A fl ow is a sequence of packets sent from a particular source to a particular (unicast or multicast) destination 
for which the source desires special handling by the intervening routers. The nature of that special han-
dling might be conveyed to the routers by a control protocol, such as a resource reservation protocol, or by 
information within the fl ow’s packets themselves, e.g., in a hop-by-hop option. The details of such control 
protocols or options are beyond the scope of RFC 2460.

There may be multiple active fl ows from a source to a destination, as well as traffi c that is not associated 
with any fl ow. A fl ow is uniquely identifi ed by the combination of a source address and a nonzero fl ow label. 
Packets that do not belong to a fl ow carry a fl ow label of zero.

A fl ow label is assigned to a fl ow by the fl ow’s source node. New fl ow labels must be chosen (pseudo-)ran-
domly and uniformly from the range 1 to FFFFF hex. The purpose of the random allocation is to make any 
set of bits within the Flow Label fi eld suitable for use as a hash key by routers, for looking up the state as-
sociated with the fl ow.

All packets belonging to the same fl ow must be sent with the same source address, destination address, and 
fl ow label. If any of those packets includes a Hop-by-Hop Options header, then they all must be originated 
with the same Hop-by-Hop Options header contents (excluding the Next Header fi eld of the Hop-by-Hop 
Options header). If any of those packets includes a Routing header, then they all must be originated with the 
same contents in all extension headers up to and including the Routing header (excluding the Next Header 
fi eld in the Routing header). The routers or destinations are permitted, but not required, to verify that these 
conditions are satisfi ed. If a violation is detected, it should be reported to the source by an ICMP Parameter 
Problem message, Code 0, pointing to the high-order octet of the Flow Label fi eld (i.e., offset 1 within the 
IPv6 packet).

The maximum lifetime of any fl ow-handling state established along a fl ow’s path must be specifi ed as part 
of the description of the state-establishment mechanism, e.g., the resource reservation protocol or the fl ow-
setup hop-by-hop option. A source must not re-use a fl ow label for a new fl ow within the maximum lifetime 
of any fl ow-handling state that might have been established for the prior use of that fl ow label.

When a node stops and restarts (e.g., as a result of a “crash”), it must be careful not to use a fl ow label that 
it might have used for an earlier fl ow whose lifetime may not have expired yet. This may be accomplished 
by recording fl ow label usage on stable storage so that it can be remembered across crashes, or by refrain-
ing from using any fl ow labels until the maximum lifetime of any possible previously established fl ows has 
expired. If the minimum time for rebooting the node is known, that time can be deducted from the necessary 
waiting period before starting to allocate fl ow labels.

There is no requirement that all, or even most, packets belong to fl ows, that is, carry nonzero fl ow labels. 
This observation is placed here to remind protocol designers and implementors not to assume otherwise. 
For example, it would be unwise to design a router whose performance would be adequate only if most 
packets belonged to fl ows, or to design a header compression scheme that only worked on packets that 
belonged to fl ows.

•

•
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6.10 Formatting Guidelines for Options
This appendix gives some advice on how to lay out the fi elds when designing new options to be used in the 
Hop-by-Hop Options header or  the Destination Options header, as described in Section 6.4.2. These guide-
lines are based on the following assumptions:

One desirable feature is that any multioctet fi elds within the Option Data area of an option be aligned on 
their natural boundaries, i.e., fi elds of width n octets should be placed at an integer multiple of n octets from 
the start of the Hop-by-Hop or Destination Options header, for n = 1, 2, 4, or 8.

Another desirable feature is that the Hop-by-Hop or Destination Options header take up as little space as 
possible, subject to the requirement that the header be an integer multiple of 8 octets long.

It may be assumed that, when either of the option-bearing headers are present, they carry a very small num-
ber of options, usually only one.

These assumptions suggest the following approach to laying out the  fi elds of an option: order the fi elds 
from smallest to largest, with  no interior padding, then derive the alignment requirement for the  entire op-
tion based on the alignment requirement of the largest fi eld  (up to a maximum alignment of 8 octets). This 
approach is illustrated in the following examples:

Example 1
If an option X required two data fi elds, one of length 8 octets and one of length 4 octets, it would be laid out 
as follows:

                                   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                                   | Option Type=X |Opt Data Len=12|
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                         4-octet field                         |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   +                         8-octet field                         +
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Its alignment requirement is 8n + 2, to ensure that the 8-octet fi eld  starts at a multiple-of-8 offset from the 
start of the enclosing  header. A complete Hop-by-Hop or Destination Options header containing this one 
option would look as follows:

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Next Header  | Hdr Ext Len=1 | Option Type=X |Opt Data Len=12|
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                         4-octet field                         |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   +                         8-octet field                         +
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Minoli_Book.indb   277Minoli_Book.indb   277 3/9/2006   6:30:54 PM3/9/2006   6:30:54 PM



Chapter 6

278

Example 2
If an option Y required three data fi elds, one of length 4 octets, one of length 2 octets, and one of length 1 
octet, it would be laid out as follows:

                                                   +-+-+-+-+-+-+-+-+
                                                   | Option Type=Y |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |Opt Data Len=7 | 1-octet field |         2-octet field         |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                         4-octet field                         |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Its alignment requirement is 4n + 3, to ensure that the 4-octet fi eld starts at a multiple-of-4 offset from the 
start of the enclosing header. A complete Hop-by-Hop or Destination Options header containing this one 
option would look as follows:

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Next Header  | Hdr Ext Len=1 | Pad1 Option=0 | Option Type=Y |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |Opt Data Len=7 | 1-octet field |         2-octet field         |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                         4-octet field                         |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | PadN Option=1 |Opt Data Len=2 |       0       |       0       |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Example 3
A Hop-by-Hop or Destination Options header containing both options X and Y from Examples 1 and 2 
would have one of the two following formats, depending on which option appeared fi rst:

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Next Header  | Hdr Ext Len=3 | Option Type=X |Opt Data Len=12|
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                         4-octet field                         |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   +                         8-octet field                         +
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | PadN Option=1 |Opt Data Len=1 |       0       | Option Type=Y |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |Opt Data Len=7 | 1-octet field |         2-octet field         |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                         4-octet field                         |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | PadN Option=1 |Opt Data Len=2 |       0       |       0       |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
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   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Next Header  | Hdr Ext Len=3 | Pad1 Option=0 | Option Type=Y |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |Opt Data Len=7 | 1-octet field |         2-octet field         |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                         4-octet field                         |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | PadN Option=1 |Opt Data Len=4 |       0       |       0       |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |       0       |       0       | Option Type=X |Opt Data Len=12|
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                         4-octet field                         |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   +                         8-octet field                         +
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

6.11 Introduction to Addressing
This section defi nes the addressing architecture of the IP Version 6 (IPv6) protocol. IETF RFC 3513 defi nes 
the addressing architecture of the IP Version 6 (IPv6) protocol; it includes the basic formats for the various 
types of IPv6 addresses (unicast, anycast, and multicast). This section covers the IPv6 addressing model, text 
representations of IPv6 addresses, defi nition of IPv6 unicast addresses, anycast addresses, and multicast ad-
dresses. The discussion is based on IETF RFC 3513 [HIN200301]. The discussion is for pedagogical purposes; 
developers should refer to the latest IETF documentation.

6.12  IPv6 Addressing
IPv6 addresses are 128-bit identifi ers for interfaces and sets of interfaces (where “interface” is as defi ned in 
Section 2 of IPV6.) There are three types of addresses:

Unicast:  An identifi er for a single interface. A packet sent to a unicast address is delivered to the inter-
face identifi ed by that address.

Anycast:  An identifi er for a set of interfaces (typically belonging to different nodes). A packet sent to 
an anycast address is delivered to one of the interfaces identifi ed by that address (the “nearest” one, 
according to the routing protocols’ measure of distance).

Multicast:  An identifi er for a set of interfaces (typically belonging to different nodes). A packet sent to 
a multicast address is delivered to all interfaces identifi ed by that address.

There are no broadcast addresses in IPv6, their function being superseded by multicast addresses.

In RFC 3513, fi elds in addresses are given a specifi c name, for example “subnet”. When this name is used 
with the term “ID” for identifi er after the name (for example, “subnet ID”), it refers to the contents of the 
named fi eld. When it is used with the term “prefi x” (for example, “subnet prefi x”) it refers to all of the ad-
dress from the left up to and including this fi eld. In IPv6, all zeros and all ones are legal values for any fi eld, 
unless specifi cally excluded. Specifi cally, prefi xes may contain, or end with, zero-valued fi elds.

6.12.1 Addressing Model
IPv6 addresses of all types are assigned to interfaces, not nodes. An IPv6 unicast address refers to a single 
interface. Since each interface belongs to a single node, any of that node’s interfaces’ unicast addresses may 
be used as an identifi er for the node.
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All interfaces are required to have at least one link-local unicast address (see section 6.12.8 for additional 
required addresses). A single interface may also have multiple IPv6 addresses of any type (unicast, anycast, 
and multicast) or scope. Unicast addresses with scope greater than link-scope are not needed for interfaces 
that are not used as the origin or destination of any IPv6 packets to or from nonneighbors. This is sometimes 
convenient for point-to-point interfaces. There is one exception to this addressing model:

 A unicast address or a set of unicast addresses may be assigned to multiple physical interfaces if the 
implementation treats the multiple physical interfaces as one interface when presenting it to the internet 
layer. This is useful for load-sharing over multiple physical interfaces.

Currently IPv6 continues the IPv4 model that a subnet prefi x is associated with one link. Multiple subnet 
prefi xes may be assigned to the same link.

6.12.2  Text Representation of Addresses
There are three conventional forms for representing IPv6 addresses as text strings:

1.  The preferred form is x:x:x:x:x:x:x:x, where the ‘x’s are the hexadecimal values of the eight 16-bit 
pieces of the address.

Examples:

         FEDC:BA98:7654:3210:FEDC:BA98:7654:3210

         1080:0:0:0:8:800:200C:417A

 Note that it is not necessary to write the leading zeros in an individual fi eld, but there must be at 
least one numeral in every fi eld (except for the case described in 2.).

2.  Due to some methods of allocating certain styles of IPv6 addresses, it will be common for address-
es to contain long strings of zero bits. In order to make writing addresses containing zero bits easier 
a special syntax is available to compress the zeros. The use of “::” indicates one or more groups of 
16 bits of zeros. The “::” can only appear once in an address. The “::” can also be used to compress 
leading or trailing zeros in an address.

For example, the following addresses:

         1080:0:0:0:8:800:200C:417A  a unicast address
         FF01:0:0:0:0:0:0:101        a multicast address
         0:0:0:0:0:0:0:1             the loopback address
         0:0:0:0:0:0:0:0             the unspecified addresses

may be represented as:

         1080::8:800:200C:417A       a unicast address
         FF01::101                   a multicast address
         ::1                         the loopback address
         ::                          the unspecified addresses

3.  An alternative form that is sometimes more convenient when dealing with a mixed environment 
of IPv4 and IPv6 nodes is x:x:x:x:x:x:d.d.d.d, where the ‘x’s are the hexadecimal values of the six 
high-order 16-bit pieces of the address, and the ‘d’s are the decimal values of the four low-order 
8-bit pieces of the address (standard IPv4 representation). Examples:
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         0:0:0:0:0:0:13.1.68.3

         0:0:0:0:0:FFFF:129.144.52.38

or in compressed form:

         ::13.1.68.3

         ::FFFF:129.144.52.38

6.12.3  Text Representation of Address Prefi xes
The text representation of IPv6 address prefi xes is similar to the way IPv4 addresses prefi xes are written in 
CIDR notation. An IPv6 address prefi x is represented by the notation:

ipv6-address/prefix-length

where

ipv6-address:  is an IPv6 address in any of the notations listed in Section 6.12.2.
prefi x-length:  is a decimal value specifying how many of the leftmost contiguous bits of the address 

comprise the prefi x.

For example, the following are legal representations of the 60-bit prefi x 12AB00000000CD3 (hexadecimal):

      12AB:0000:0000:CD30:0000:0000:0000:0000/60
      12AB::CD30:0:0:0:0/60
      12AB:0:0:CD30::/60

The following are not legal representations of the above prefi x:

      12AB:0:0:CD3/60   may drop leading zeros, but not trailing zeros,
                        within any 16-bit chunk of the address

      12AB::CD30/60     address to left of “/” expands to
                        12AB:0000:0000:0000:0000:000:0000:CD30

      12AB::CD3/60      address to left of “/” expands to
                        12AB:0000:0000:0000:0000:000:0000:0CD3

When writing both a node address and a prefi x of that node address (e.g., the node’s subnet prefi x), the two 
can combined as follows:

      the node address      12AB:0:0:CD30:123:4567:89AB:CDEF
      and its subnet number 12AB:0:0:CD30::/60

can be abbreviated as 12AB:0:0:CD30:123:4567:89AB:CDEF/60
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6.12.4  Address Type Identifi cation
The type of an IPv6 address is identifi ed by the high-order bits of the address, as follows:

   Address type         Binary prefix        IPv6 notation   Section
   ------------         -------------        -------------   -------
   Unspecified          00...0  (128 bits)   ::/128          6.12.5.2
   Loopback             00...1  (128 bits)   ::1/128         6.12.5.3
   Multicast            11111111             FF00::/8        6.12.7
   Link-local unicast   1111111010           FE80::/10       6.12.5.6
   Site-local unicast   1111111011           FEC0::/10       6.12.5.6
   Global unicast       (everything else)

Anycast addresses are taken from the unicast address spaces (of any scope) and are not syntactically distin-
guishable from unicast addresses.

The general format of global unicast addresses is described in Section 6.12.5.4. Some special-purpose 
subtypes of global unicast addresses which contain embedded IPv4 addresses (for the purposes of IPv4-IPv6 
interoperation) are described in Section 6.12.5.5.

Future specifi cations may redefi ne one or more sub-ranges of the global unicast space for other purposes, 
but unless and until that happens, implementations must treat all addresses that do not start with any of the 
above-listed prefi xes as global unicast addresses.

6.12.5   Unicast Addresses
IPv6 unicast addresses are aggregable with prefi xes of arbitrary bit-length similar to IPv4 addresses under 
Classless Interdomain Routing.

There are several types of unicast addresses in IPv6, in particular global unicast, site-local unicast, and link-
local unicast. There are also some special-purpose subtypes of global unicast, such as IPv6 addresses with 
embedded IPv4 addresses or encoded NSAP addresses. Additional address types or subtypes can be defi ned 
in the future.

IPv6 nodes may have considerable or little knowledge of the internal structure of the IPv6 address, depend-
ing on the role the node plays (for instance, host versus router). At a minimum, a node may consider that 
unicast addresses (including its own) have no internal structure:

   |                           128 bits                              |
   +-----------------------------------------------------------------+
   |                          node address                           |
   +-----------------------------------------------------------------+

A slightly sophisticated host (but still rather simple) may additionally be aware of subnet prefi x(es) for the 
link(s) it is attached to, where different addresses may have different values for n:

   |                         n bits                 |   128-n bits   |
   +------------------------------------------------+----------------+
   |                   subnet prefix                | interface ID   |
   +------------------------------------------------+----------------+
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Though a very simple router may have no knowledge of the internal structure of IPv6 unicast addresses, 
routers will more generally have knowledge of one or more of the hierarchical boundaries for the operation 
of routing protocols. The known boundaries will differ from router to router, depending on what positions 
the router holds in the routing hierarchy.

6.12.5.1  Interface Identifi ers
Interface identifi ers in IPv6 unicast addresses are used to identify interfaces on a link. They are required to 
be unique within a subnet prefi x. It is recommended that the same interface identifi er not be assigned to dif-
ferent nodes on a link. They may also be unique over a broader scope. In some cases an interface’s identifi er 
will be derived directly from that interface’s link-layer address. The same interface identifi er may be used on 
multiple interfaces on a single node, as long as they are attached to different subnets.

Note that the uniqueness of interface identifi ers is independent of the uniqueness of IPv6 addresses. For 
example, a global unicast address may be created with a nonglobal scope interface identifi er and a site-local 
address may be created with a global scope interface identifi er.

For all unicast addresses, except those that start with binary value 000, Interface IDs are required to be 64 
bits long and to be constructed in Modifi ed EUI-64 format.

Modifi ed EUI-64 format based Interface identifi ers may have global scope when derived from a global token 
(e.g., IEEE 802 48-bit MAC or IEEE EUI-64 identifi ers) or may have local scope where a global token is not 
available (e.g., serial links, tunnel end-points, etc.) or where global tokens are undesirable (e.g., temporary 
tokens for privacy.

Modifi ed EUI-64 format interface identifi ers are formed by inverting the “u” bit (universal/local bit in IEEE 
EUI-64 terminology) when forming the interface identifi er from IEEE EUI-64 identifi ers. In the resulting 
Modifi ed EUI-64 format the “u” bit is set to one (1) to indicate global scope, and it is set to zero (0) to indi-
cate local scope. The fi rst three octets in binary of an IEEE EUI-64 identifi er are as follows:

       0       0 0       1 1       2
      |0       7 8       5 6       3|
      +----+----+----+----+----+----+
      |cccc|ccug|cccc|cccc|cccc|cccc|
      +----+----+----+----+----+----+

written in Internet standard bit-order , where “u” is the universal/local bit, “g” is the individual/group bit, 
and “c” are the bits of the company_id. 

The motivation for inverting the “u” bit when forming an interface identifi er is to make it easy for system ad-
ministrators to hand confi gure nonglobal identifi ers when hardware tokens are not available. This is expected 
to be case for serial links, tunnel end- points, etc. The alternative would have been for these to be of the form 
0200:0:0:1, 0200:0:0:2, etc., instead of the much simpler 1, 2, etc.

The use of the universal/local bit in the Modifi ed EUI-64 format identifi er is to allow development of future 
technology that can take advantage of interface identifi ers with global scope.

The details of forming interface identifi ers are defi ned in the appropriate “IPv6 over <link>” specifi cation 
such as “IPv6 over Ethernet,” “IPv6 over FDDI,” and so on.
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6.12.5.2 The  Unspecifi ed Address
The address 0:0:0:0:0:0:0:0 is called the unspecifi ed address. It must never be assigned to any node. It indi-
cates the absence of an address. One example of its use is in the Source Address fi eld of any IPv6 packets 
sent by an initializing host before it has learned its own address.

The unspecifi ed address must not be used as the destination address of IPv6 packets or in IPv6 Routing 
Headers. An IPv6 packet with a source address of unspecifi ed must never be forwarded by an IPv6 router.

6.12.5.3  The Loopback Address
The unicast address 0:0:0:0:0:0:0:1 is called the loopback address. It may be used by a node to send an IPv6 
packet to itself. It may never be assigned to any physical interface.  It is treated as having link-local scope, 
and may be thought of as the link-local unicast address of a virtual interface (typically called the loopback 
interface) to an imaginary link that goes nowhere.

The loopback address must not be used as the source address in IPv6 packets that are sent outside of a single 
node. An IPv6 packet with a destination address of loopback must never be sent outside of a single node and 
must never be forwarded by an IPv6 router. A packet received on an interface with destination address of 
loopback must be dropped.

6.12.5.4  Global Unicast Addresses
The general format for IPv6 global unicast addresses is as follows:

   |         n bits         |   m bits  |       128-n-m bits         |
   +------------------------+-----------+----------------------------+
   | global routing prefix  | subnet ID |       interface ID         |
   +------------------------+-----------+----------------------------+

where the global routing prefi x is a (typically hierarchically- structured) value assigned to a site (a cluster 
of subnets/links), the subnet ID is an identifi er of a link within the site, and the interface ID is as defi ned in 
section 6.12.5.1.

All global unicast addresses other than those that start with binary 000 have a 64-bit interface ID fi eld (i.e., 
n + m = 64), formatted as described in Section 6.12.5.1. Global unicast addresses that start with binary 000 
have no such constraint on the size or structure of the interface ID fi eld.

Examples of global unicast addresses that start with binary 000 are the IPv6 address with embedded IPv4 
addresses described in Section 6.12.5.5 and the IPv6 address containing encoded NSAP addresses 

6.12.5.5  IPv6 Addresses with Embedded IPv4 Addresses
The IPv6 transition mechanisms include a technique for hosts and routers to dynamically tunnel IPv6 
packets over IPv4 routing infrastructure. IPv6 nodes that use this technique are assigned special IPv6 unicast 
addresses that carry a global IPv4 address in the low-order 32 bits. This type of address is termed an “IPv4- 
compatible IPv6 address” and has the format:

   |                80 bits               | 16 |      32 bits        |
   +--------------------------------------+--------------------------+
   |0000..............................0000|0000|    IPv4 address     |
   +--------------------------------------+----+---------------------+

Note: The IPv4 address used in the “IPv4-compatible IPv6 address” must be a globally-unique IPv4 uni-
cast address.
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A second type of IPv6 address which holds an embedded IPv4 address is also defi ned. This address type is 
used to represent the addresses of IPv4 nodes as IPv6 addresses. This type of address is termed an “IPv4-
mapped IPv6 address” and has the format:

   |                80 bits               | 16 |      32 bits        |
   +--------------------------------------+--------------------------+
   |0000..............................0000|FFFF|    IPv4 address     |
   +--------------------------------------+----+---------------------+

6.12.5.6  Local-Use IPv6 Unicast Addresses
There are two types of local-use unicast addresses defi ned. These are Link-Local and Site-Local. The Link-
Local is for use on a single link and the Site-Local is for use in a single site. Link-Local addresses have the 
following format:

   |   10     |
   |  bits    |         54 bits         |          64 bits           |
   +----------+-------------------------+----------------------------+
   |1111111010|           0             |       interface ID         |
   +----------+-------------------------+----------------------------+

Link-Local addresses are designed to be used for addressing on a single link for purposes such as automatic 
address confi guration, neighbor discovery, or when no routers are present.

Routers must not forward any packets with link-local source or destination addresses to other links.

Site-Local addresses have the following format:

   |   10     |
   |  bits    |         54 bits         |         64 bits            |
   +----------+-------------------------+----------------------------+
   |1111111011|        subnet ID        |       interface ID         |
   +----------+-------------------------+----------------------------+

Site-local addresses are designed to be used for addressing inside of a site without the need for a global 
prefi x. Although a subnet ID may be up to 54-bits long, it is expected that globally-connected sites will use 
the same subnet IDs for site-local and global prefi xes.

Routers must not forward any packets with site-local source or destination addresses outside of the site.

6.12.6  Anycast Addresses
An IPv6 anycast address is an address that is assigned to more than one interface (typically belonging to 
different nodes), with the property that a packet sent to an anycast address is routed to the “nearest” interface 
having that address, according to the routing protocols’ measure of distance.

Anycast addresses are allocated from the unicast address space, using any of the defi ned unicast address 
formats. Thus, anycast addresses are syntactically indistinguishable from unicast addresses. When a unicast 
address is assigned to more than one interface, thus turning it into an anycast address, the nodes to which the 
address is assigned must be explicitly confi gured to know that it is an anycast address.

For any assigned anycast address, there is a longest prefi x P of that address that identifi es the topological region 
in which all interfaces belonging to that anycast address reside. Within the region identifi ed by P, the anycast 
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address must be maintained as a separate entry in the routing system (commonly referred to as a “host route”); 
outside the region identifi ed by P, the anycast address may be aggregated into the routing entry for prefi x P.

Note that in the worst case, the prefi x P of an anycast set may be the null prefi x, i.e., the members of the set 
may have no topological locality. In that case, the anycast address must be maintained as a separate routing 
entry throughout the entire internet, which presents a severe scaling limit on how many such “global” any-
cast sets may be supported. Therefore, it is expected that support for global anycast sets may be unavailable 
or very restricted.

One expected use of anycast addresses is to identify the set of routers belonging to an organization providing 
internet service. Such addresses could be used as intermediate addresses in an IPv6 Routing header, to cause 
a packet to be delivered via a particular service provider or sequence of service providers.

Some other possible uses are to identify the set of routers attached to a particular subnet, or the set of routers 
providing entry into a particular routing domain.

There is little experience with widespread, arbitrary use of internet anycast addresses, and some known com-
plications and hazards when using them in their full generality. Until more experience has been gained and 
solutions are specifi ed, the following restrictions are imposed on IPv6 anycast addresses:

An anycast address must not be used as the source address of an    IPv6 packet.

An anycast address must not be assigned to an IPv6 host, that is,    it may be assigned to an IPv6 router only.

6.12.6.1  Required Anycast Address
The Subnet-Router anycast address is predefi ned. Its format is as follows:

   |                         n bits                 |   128-n bits   |
   +------------------------------------------------+----------------+
   |                   subnet prefix                | 00000000000000 |
   +------------------------------------------------+----------------+

The “subnet prefi x” in an anycast address is the prefi x which identifi es a specifi c link. This anycast address 
is syntactically the same as a unicast address for an interface on the link with the interface identifi er set to 
zero.

Packets sent to the Subnet-Router anycast address will be delivered to one router on the subnet. All routers 
are required to support the Subnet-Router anycast addresses for the subnets to which they have interfaces.

The subnet-router anycast address is intended to be used for applications where a node needs to communi-
cate with any one of the set of routers.

6.12.7  Multicast Addresses
An IPv6 multicast address is an identifi er for a group of interfaces (typically on different nodes). An inter-
face may belong to any number of multicast groups. Multicast addresses have the following format:

   |   8    |  4 |  4 |                  112 bits                   |
   +------ -+----+----+---------------------------------------------+
   |11111111|flgs|scop|                  group ID                   |
   +--------+----+----+---------------------------------------------+

Binary 11111111 at the start of the address identifi es the address as being a multicast address.
Flgs is a set of 4 fl ags: |0|0|0|T|

•
•
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The high-order 3 fl ags are reserved, and must be initialized to 0.
T = 0 indicates a permanently-assigned (“well-known”) multicast address, assigned by the Internet 

Assigned Number Authority (IANA).
T = 1 indicates a nonpermanently-assigned (“transient”) multicast address.
Scop is a 4-bit multicast scope value used to limit the scope of the multicast group. The values are:
0   reserved
1  interface-local scope
2   link-local scope
3   reserved
4  admin-local scope
5   site-local scope
6   (unassigned)
7   (unassigned)
8   organization-local scope
9   (unassigned)
A   (unassigned)
B   (unassigned)
C   (unassigned)
D   (unassigned)
E   global scope
F   reserved
Interface-local scope spans only a single interface on a node, and is useful only for loopback trans-
mission of multicast.
Link-local and site-local multicast scopes span the same topological regions as the corresponding 
unicast scopes.
Admin-local scope is the smallest scope that must be administratively confi gured, i.e., not automat-
ically derived from physical connectivity or other, nonmulticast-related confi guration.
Organization-local scope is intended to span multiple sites belonging to a single organization.
Scopes labeled “(unassigned)” are available for administrators to defi ne additional multicast regions.
Group ID identifi es the multicast group, either permanent or transient, within the given scope.

The “meaning” of a permanently-assigned multicast address is independent of the scope value. For example, 
if the “NTP servers group” is assigned a permanent multicast address with a group ID of 101 (hex), then:

FF01:0:0:0:0:0:0:101 means all NTP servers on the same interface (i.e., the same node) as the sender.
FF02:0:0:0:0:0:0:101 means all NTP servers on the same link as the sender.
FF05:0:0:0:0:0:0:101 means all NTP servers in the same site as the sender.
FF0E:0:0:0:0:0:0:101 means all NTP servers in the internet.

Nonpermanently-assigned multicast addresses are meaningful only within a given scope. For example, a 
group identifi ed by the nonpermanent, site-local multicast address FF15:0:0:0:0:0:0:101 at one site bears 
no relationship to a group using the same address at a different site, nor to a nonpermanent group using the 
same group ID with different scope, nor to a permanent group with the same group ID.

Multicast addresses must not be used as source addresses in IPv6 packets or appear in any Routing header.

Routers must not forward any multicast packets beyond of the scope indicated by the scop fi eld in the desti-
nation multicast address.

Nodes must not originate a packet to a multicast address whose scop fi eld contains the reserved value 0; if 
such a packet is received, it must be silently dropped. Nodes should not originate a packet to a multicast 

•

•

•

•

•
•
•
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address whose scop fi eld contains the reserved value F; if such a packet is sent or received, it must be treated 
the same as packets destined to a global (scop E) multicast address.

6.12.7.1  Pre-Defi ned Multicast Addresses
The following well-known multicast addresses are pre-defi ned. The group ID’s defi ned in this section are 
defi ned for explicit scope values.

Use of these group IDs for any other scope values, with the T fl ag equal to 0, is not allowed.

      Reserved Multicast Addresses:   FF00:0:0:0:0:0:0:0
                                      FF01:0:0:0:0:0:0:0
                                      FF02:0:0:0:0:0:0:0
                                      FF03:0:0:0:0:0:0:0
                                      FF04:0:0:0:0:0:0:0
                                      FF05:0:0:0:0:0:0:0
                                      FF06:0:0:0:0:0:0:0
                                      FF07:0:0:0:0:0:0:0
                                      FF08:0:0:0:0:0:0:0
                                      FF09:0:0:0:0:0:0:0
                                      FF0A:0:0:0:0:0:0:0
                                      FF0B:0:0:0:0:0:0:0
                                      FF0C:0:0:0:0:0:0:0
                                      FF0D:0:0:0:0:0:0:0
                                      FF0E:0:0:0:0:0:0:0
                                      FF0F:0:0:0:0:0:0:0

The above multicast addresses are reserved and shall never be assigned to any multicast group.

      All Nodes Addresses:    FF01:0:0:0:0:0:0:1
                              FF02:0:0:0:0:0:0:1

The above multicast addresses identify the group of all IPv6 nodes, within scope 1 (interface-local) or 2 
(link-local).

      All Routers Addresses:   FF01:0:0:0:0:0:0:2
                               FF02:0:0:0:0:0:0:2
                               FF05:0:0:0:0:0:0:2

The above multicast addresses identify the group of all IPv6 routers, within scope 1 (interface-local), 2 (link-
local), or 5 (site-local).

      Solicited-Node Address:  FF02:0:0:0:0:1:FFXX:XXXX

Solicited-node multicast address are computed as a function of a node’s unicast and anycast addresses. A 
solicited-node multicast address is formed by taking the low-order 24 bits of an address (unicast or anycast) 
and appending those bits to the prefi x FF02:0:0:0:0:1:FF00::/104 resulting in a multicast address in the range

      FF02:0:0:0:0:1:FF00:0000

to
      FF02:0:0:0:0:1:FFFF:FFFF
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For example, the solicited node multicast address corresponding to the IPv6 address 
4037::01:800:200E:8C6C is FF02::1:FF0E:8C6C. IPv6 addresses that differ only in the high-order bits, e.g., 
due to multiple high-order prefi xes associated with different aggregations, will map to the same solicited-
node address thereby, reducing the number of multicast addresses a node must join.

A node is required to compute and join (on the appropriate interface) the associated Solicited-Node multi-
cast addresses for every unicast and anycast address it is assigned.

6.12.8  A Node’s Required Addresses
A host is required to recognize the following addresses as identifying itself:

Its required Link-Local Address for each interface.
Any additional Unicast and Anycast Addresses that have been confi gured for the node’s interfaces 
(manually or automatically).
The loopback address.
The All-Nodes Multicast Addresses defi ned in Section 6.12.7.1.
The Solicited-Node Multicast Address for each of its unicast and anycast addresses.
Multicast Addresses of all other groups to which the node belongs.

A router is required to recognize all addresses that a host is required to recognize, plus the following ad-
dresses as identifying itself:

The Subnet-Router Anycast Addresses for all interfaces for which it is confi gured to act as a router.
All other Anycast Addresses with which the router has been confi gured.
The All-Routers Multicast Addresses defi ned in Section 6.12.7.1.

6.13 IANA Considerations
The initial assignment of IPv6 address space is as follows:

   Allocation                            Prefix         Fraction of
                                         (binary)       Address Space
   -----------------------------------   --------       -------------
   Unassigned (see Note 1 below)         0000 0000      1/256
   Unassigned                            0000 0001      1/256
   Reserved for NSAP Allocation          0000 001       1/128 [RFC1888]
   Unassigned                            0000 01        1/64
   Unassigned                            0000 1         1/32
   Unassigned                            0001           1/16
   Global Unicast                        001            1/8   (per RFC2374)
   Unassigned                            010            1/8
   Unassigned                            011            1/8
   Unassigned                            100            1/8
   Unassigned                            101            1/8
   Unassigned                            110            1/8
   Unassigned                            1110           1/16
   Unassigned                            1111 0         1/32
   Unassigned                            1111 10        1/64
   Unassigned                            1111 110       1/128
   Unassigned                            1111 1110 0    1/512
   Link-Local Unicast Addresses          1111 1110 10   1/1024
   Site-Local Unicast Addresses          1111 1110 11   1/1024
   Multicast Addresses                   1111 1111      1/256

•
•

•
•
•
•
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Notes:

1. The “unspecifi ed address”, the “loopback address”, and the IPv6 Addresses with Embedded IPv4 Addresses 
are assigned out of the 0000 0000 binary prefi x space.

2. For now, IANA should limit its allocation of IPv6 unicast address space to the range of addresses that start 
with binary value 001. The rest of the global unicast address space (approximately 85% of the IPv6 address 
space) is reserved for future defi nition and use, and is not to be assigned by IANA at this time.

6.14 Creating  Modifi ed EUI-64 Format Interface Identifi ers
Depending on the characteristics of a specifi c link or node there are a number of approaches for creating 
Modifi ed EUI-64 format interface identifi ers. This appendix describes some of these approaches.

EUI is defi ned in IEEE, “Guidelines for 64-bit Global Identifi er (EUI-64) Registration Authority”, March 
1997 (see Section 6.15).

Links or Nodes with IEEE EUI-64 Identifi ers

The only change needed to transform an IEEE EUI-64 identifi er to an interface identifi er is to invert the “u” 
(universal/local) bit. For example, a globally unique IEEE EUI-64 identifi er of the form:

   |0              1|1              3|3              4|4              6|
   |0              5|6              1|2              7|8              3|
   +----------------+----------------+----------------+----------------+
   |cccccc0gcccccccc|ccccccccmmmmmmmm|mmmmmmmmmmmmmmmm|mmmmmmmmmmmmmmmm|
   +----------------+----------------+----------------+----------------+

 where “c” are the bits of the assigned company_id, “0” is the value of the universal/local bit to indicate 
global scope, “g” is individual/group bit, and “m” are the bits of the manufacturer-selected extension identi-
fi er. The IPv6 interface identifi er would be of the form:

   |0              1|1              3|3              4|4              6|
   |0              5|6              1|2              7|8              3|
   +----------------+----------------+----------------+----------------+
   |cccccc1gcccccccc|ccccccccmmmmmmmm|mmmmmmmmmmmmmmmm|mmmmmmmmmmmmmmmm|
   +----------------+----------------+----------------+----------------+

The only change is inverting the value of the universal/local bit.

Links or Nodes with IEEE 802 48 bit MAC’s

EUI64 defi nes a method to create a IEEE EUI-64 identifi er from an IEEE 48bit MAC identifi er. This is to 
insert two octets, with hexadecimal values of 0xFF and 0xFE, in the middle of the 48 bit MAC (between the 
company_id and vendor supplied id). For example, the 48 bit IEEE MAC with global scope:

   |0              1|1              3|3              4|
   |0              5|6              1|2              7|
   +----------------+----------------+----------------+
   |cccccc0gcccccccc|ccccccccmmmmmmmm|mmmmmmmmmmmmmmmm|
   +----------------+----------------+----------------+

 where “c” are the bits of the assigned company_id, “0” is the valueof the universal/local bit to indicate 
global scope, “g” is individual/group bit, and “m” are the bits of the manufacturer-selected extension identi-
fi er. The interface identifi er would be of the form:
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   |0              1|1              3|3              4|4              6|
   |0              5|6              1|2              7|8              3|
   +----------------+----------------+----------------+----------------+
   |cccccc1gcccccccc|cccccccc11111111|11111110mmmmmmmm|mmmmmmmmmmmmmmmm|
   +----------------+----------------+----------------+----------------+

When IEEE 802 48bit MAC addresses are available (on an interface or a node), an implementation may use 
them to create interface identifi ers due to their availability and uniqueness properties.

Links with Other Kinds of Identifi ers

There are a number of types of links that have link-layer interface identifi ers other than IEEE EIU-64 or 
IEEE 802 48-bit MACs. Examples include LocalTalk and Arcnet. The method to create an Modifi ed EUI-64 
format identifi er is to take the link identifi er (e.g., the LocalTalk 8 bit node identifi er) and zero fi ll it to the 
left. For example, a LocalTalk 8 bit node identifi er of hexadecimal value 0x4F results in the following inter-
face identifi er:

   |0              1|1              3|3              4|4              6|
   |0              5|6              1|2              7|8              3|
   +----------------+----------------+----------------+----------------+
   |0000000000000000|0000000000000000|0000000000000000|0000000001001111|
   +----------------+----------------+----------------+----------------+

Note that this results in the universal/local bit set to “0” to indicate local scope.

Links without Identifi ers

There are a number of links that do not have any type of built-in identifi er. The most common of these are se-
rial links and confi gured tunnels. Interface identifi ers must be chosen that are unique within a subnet-prefi x.

When no built-in identifi er is available on a link the preferred approach is to use a global interface identifi er 
from another interface or one which is assigned to the node itself. When using this approach no other inter-
face connecting the same node to the same subnet-prefi x may use the same identifi er.

If there is no global interface identifi er available for use on the link the implementation needs to create a 
local-scope interface identifi er. The only requirement is that it be unique within a subnet prefi x. There are 
many possible approaches to select a subnet-prefi x-unique interface identifi er. These include:

Manual Confi guration
Node Serial Number
Other node-specifi c token

The subnet-prefi x-unique interface identifi er should be generated in a manner that it does not change after a 
reboot of a node or if interfaces are added or deleted from the node.

The selection of the appropriate algorithm is link and implementation dependent. The details on forming 
interface identifi ers are defi ned in the appropriate “IPv6 over <link>” specifi cation. It is strongly recom-
mended that a collision detection algorithm be implemented as part of any automatic algorithm.

6.15  64-Bit Global Identifi er (EUI-64) Registration Authority
The IEEE-defi ned 64-bit extended unique identifi er (EUI-64) is a concatenation of the 24-bit company_id 
value by the IEEE Registration Authority and a 40-bit extension identifi er assigned by the organization 
with that company_id assignment. The IEEE administers the assignment of 24-bit company_id values. The 
assignments of these values are public, so that a user of an EUI-64 value can identify the manufacturer that 

•
•
•
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provided any value. The IEEE/RAC has no control over the assignments of 40-bit extension identifi ers and 
assumes no liability for assignments of duplicate EUI-64 identifi ers assigned by manufacturers.

Application restrictions
Given the minimal probability of consuming all the EUI-64 identifi ers, the IEEE/RAC places minimal 
restrictions on their use within standards. However, if used within the context of an IEEE standard, the 
documentation shall be reviewed by the IEEE/RAC for correctness and clarity. The IEEE/RAC shall not oth-
erwise restrict the use of EUI-64 identifi ers within standards. If the EUI-64 is referenced within non-IEEE 
standards, there shall not be any reference to IEEE unless approved by the IEEE/RAC.

Distribution restrictions
Given the minimal probability of consuming all the EUI-64 identifi ers, the IEEE/RAC places minimal re-
strictions on their redistribution through third parties, as follows:

Allocation:  The EUI-64 values shall be sold within electronically-readable parts; no more than one 
EUI-64 value shall be contained within each component that is manufactured. 

Packaging:  A component containing the EUI-64 value shall have a distinguishing characteristic (such 
as color or shape) to distinguish it from other commonly-used identifi er components. 

Documentation:  Readily available documentation. 
Legal indemnifi cation:  Any organization producing EUI-64 values shall indemnify the IEEE for dam-

ages arising from duplicate number assignments.

The term EUI-64 is trademarked by the IEEE. Companies are allowed to use this term for commercial 
purposes, but only if their use of this term has been reviewed by the IEEE/RAC and the proposed products 
using the EUI-64 conform to these restrictions.

Application documentation
As a condition for receiving a company_id assignment, a manufacturer of EUI-64 values accepts the follow-
ing responsibilities:

This documentation shall be readily available (at no cost) to any purchaser of EUI-64 values. 
The manufacturer’s part specifi cation should include an unambiguous description of how the EUI-
64 value is accessed (pin and/or address descriptions).

Manufacturer-assigned identifi ers
The manufacturer identifi er assignment allows the assignee to generate approximately 1 trillion (1012) unique 
EUI-64 values, by varying the last 40 bits. The IEEE intends not to assign another OUI/company_id value to 
a manufacturer of EUI-64 values until the manufacturer has consumed, in product, the preponderance (more 
than 90%) of this block of potential unique words. It is incumbent upon the manufacturer to ensure that large 
portions of the unique word block are not left unused in manufacturing.

6.16 Additional Technical Details
As indicated in Appendix B of Chapter 1, the IPv6 protocol apparatus is described by the 100+ RFCs 
identifi ed in the appendix (some have been obsoleted and/or replaced.)  The interested reader, particularly 
developers, should work himself/herself through that body of information for additional technical details. 

 

•
•
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C H A P T E R  7
Using IPv6 to Support 3G VoIP

This chapter approaches the discussion of application of IPv6 to VoIP by reviewing some of the informa-
tion that was introduced in Chapter 6 from a more-applied perspective than done in that chapter, and discuss 
these issues in the context of a VoIPv6 environment.

7.1 Overview of  VoIPv6 Positioning
Figure 7.1 depicts typical Network Elements found in an enterprise network, many of which come into play 
in VoIP environments. A number of these will need to support IPv6, particularly those that operate at Layer 
3 of the protocol model. Figure 7.2 depicts the medium-stage environment IPv6/VoIP under discussion. The 
idea is that:

any telephone device shown can freely, easily, and reliably communicate with any other telephone 
at any point at any time; and,
whenever possible, an end-to-end IP-based path should be taken by the call, if a path exists (natu-
rally, telephone sets that are hard-wired to the PSTN have no choice but to use the PSTN at least for 
a portion of the call path).

At the graphical level Figure 7.2 illustrates how a 3G VoIP based on IPv6 will operate. As seen in this fi gure, 
many of the VoIP elements discussed in Chapter 1, Chapter 2, and Chapter 5 need to be upgraded to support 
IPv6 and/or dual-stacks. As we noted in Chapter 3, SIP operates in either environment (also see Figure 5.8). 
SIP UAs (User Agents) often support different network address types. For example, a UA may have an IPv6 
address and an IPv4 address. Such a UA will typically be willing to use any of its addresses to establish a 
media session with a remote UA. If the remote UA only supports IPv6, for instance, both UAs will use IPv6 
to send and receive media [CAM200501]. H.323-based applications require the H.323 elements listed in Chap-
ter 2 (for example, gatekeeper, gateway, and so forth) to be IPv6-ready and/or support a dual-stack.

Up to the present various perceptions may have existed in the user community at large as shown below 
[ISL200501], but proponents see IPv6 as being the best of all worlds, specifi cally as it relates to end-to-end 
security and reachability, QoS, and overall cost-effectiveness.

Frame Relay Leased line replacement

Multiservice ATM too broad and complex

MPLS (Too) complex

IPv6 Will be great once it is deployed

Figure 7.3 depicts a simplifi ed version of the environment pre- and post-IPv6 vis-à-vis security and the NAT-
issue. Figure 7.4 depicts the simplicity of IPv6-based VPNs. IPv6 will be able to support 3G VoIP as well as 
3G hotspot services (including VoWi-Fi).

•

•
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Figure 7.1:  Typical network elements found in an enterprise network, some of which come into play in VoIP.
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Figure 7.2: Mid-stage state of an  IPv6-Enabled 3G VoIP.

Minoli_Book.indb   295Minoli_Book.indb   295 3/9/2006   6:30:58 PM3/9/2006   6:30:58 PM



Chapter 7

296

Frame Relay/ATM

IPv4/NAT 
IPv4 VPN 

IPv6 VPN 

End-to-End Security
QoS Guarantee
Premium Price

End-to-End Security
QoS Guarantee
Inexpensive

Complex Connection with NAT
Best Effort Service
Inexpensive

{ 

{ 

{ 
Figure 7.3: Security arrangements for various technologies (100,000-foot view).
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Figure 7.4: Conceptual IPv6 VPN network view.

The discussion that follows highlights important IPv6 concepts that are expected to be of importance in an 
VoIPv6 context. Some of the information is loosely based on [MSD200401].
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7.2  IPv6 Infrastructure

7.2.1  Protocol Mechanisms
As we saw in Chapter 6, an IPv6 Protocol Data Unit (PDU) consists of an IPv6 header and an IPv6 pay-
load, as depicted in Figure 7.5. The IPv6 header consists of two parts: the IPv6 base header, and optional 
extension headers. The optional extension headers are considered part of the IPv6 payload, as are the 
TCP/UDP/RTP PDUs (including the voice bit stream). Obviously, IPv4 headers and IPv6 headers are not 
interoperable; hence, a router operating in a mixed environment must use an implementation of both IPv4 
and IPv6 in order to deal both header formats; this is also the case in VoIP arrangements that support both 
environments as well as transition environments. Figure 7.6 shows the fl ows of IPv6 PDUs in a VoIPv6 
environment.  

IPv6 Packet 

IPv6 Header 

Version 

IPv6 
Header Field 

Function Length 

4 Bits Identifies the version of the protocol. For IPv6, the field is 6 (1010). 

Class 8 Bits Intended for originatinh nodes and forwarding routers to identify and 
distinguish between different classes or priorities of IPv6 packets. 

Flow Label 20 Bits Defines how traffic is handled and identified. A flow is a sequence  
of packets sent either to a unicast or a multicast destination. Field 
identifies packets that require special handling by the IPv6 node. 

Payload 
Length 

16 Bits Identifies the length, in octets, of the payload. This field is a 16-bit 
unsigned integer. The payload includes the optional extension 
headers, as well as the upper-layer protocols. 

Next Header 8 Bits Identifies the header immediately following the IPv6 header. 

Hop LImit 8 Bits Identifies the number of network segments (links or subnets),  
on which the packet is allowed to travel before being discarded  
by a router. This parameter is set by the sending host and is  
used to prevent packets from endlessly circulating on an IPv6  
internetwork. When forwarding an IPv6 packet, IPv6 routers must  
decrease the Hop Limit by 1, and must discard the IPv6 packet  
when the Hop Limit is 0. 

Source 
Address 

128 Bits Identifies the IPv6 address of the original source of the IPv6 packet. 

Destination 
Address 

128 Bits Identifies the IPv6 address of the intermediate of final destination  
of the IPv6 packet. 

IPv6 Payload 

Figure 7.5: IPv6 PDU.
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Figure 7.6:  Flows of IPv6 packets in a VoIPv6 environment.

IPv6 allows for 2128 or ~3.4 × 1038 possible addresses. As we noted in the previous chapter, the large size of 
the IPv6 address allows it to be subdivided into hierarchical routing domains that are supportive the topology 
of the today’s ubiquitous Internet (IPv4-based Internet lacks this fl exibility). Conveniently, the use of 128 
bits provides multiple levels of hierarchy and fl exibility in designing hierarchical addressing and routing. 
As we have stated, and as we have implied in Figure 7.2, there is interest in end-to-end reliable VoIP and 
this IPv6 hierarchy supports such goals. It should be kept in mind that today’s global voice networking, the 
global PSTN, is indeed arranged in a hierarchal manner for reasons of administrative oversight, administra-
tive ownership, routing, billing, etc.

7.2.2 Protocol-Support Mechanisms
Two support mechanisms are of interest: (1) a mechanism to deal with communication transmission issues; 
and (2) a mechanism to support multicast.

 Internet Control Message Protocol for IPv6 (ICMPv6) (RFC 2463) is designed to enable hosts and rout-
ers that use IPv6 protocols to report errors and forward along other basic status messages. For example, 
ICMPv6 messages are sent by Network Elements when an IPv6 PDU cannot be forwarded further along to 
reach its intended destination. ICMPv6 messages are carried as the payload of IPv6 PDUs (see Figure 7.7), 
hence, there is no guarantee on their delivery. ICMPv6 will fi nd usage and application in 3G VoIP systems.
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IPv6 Packet 

IPv6 Header IPv6 Payload 

ICMPv6 Header ICMPv6 Message 

Figure 7.7: ICMPv6 message.

The following list identifi es the functionality supported by the basic ICMPv6 mechanisms:

Destination Unreachable: An error message that informs the sending host that a PDU cannot be 
delivered.
Packet Too Big: An error message that informs the sending host that the PDU is too large to forward.
Time Exceeded: An error message that informs the sending host that the Hop Limit of an IPv6 PDU 
has expired.
Parameter Problem: An error message that informs the sending host that an error was encountered 
in processing the IPv6 header or an IPv6 extension header.
Echo Request: An informational message that is used to determine whether an IPv6 node is avail-
able on the network.
Echo Reply: An informational message that is used to reply to the ICMPv6 Echo Request message.

(The ping command is basically an ICMPv6 Echo Request messages along with the receipt of ICMPv6 
Echo Reply messages; just as is the case in IPv4, one can use pings to detect network or host communication 
failures and troubleshoot connectivity problems.)

ICMPv6 also supports Multicast Listener Discovery (MLD). MLD (RFC 2710, RFC 3590, RFC 3810) en-
ables one to manage subnet multicast membership for IPv6. MLD is a collection of three ICMPv6 messages 
that replace the Internet Group Management Protocol (IGMP) version 3 that is employed in IPv4. MLD 
messages are used to determine group membership on a network segment, also known as a link or subnet. As 
implied, MLD messages are sent as ICMPv6 messages. They are used in the context of multicast communi-
cations (see below):

 Multicast Listener Query: Message issued by a multicast router to poll a network segment for group 
members. Queries can be general, requesting group membership for all groups, or can request 
group membership for a specifi c group.
 Multicast Listener Report: Message issued by a host when it joins a multicast group, or in response 
to an MLD Multicast Listener Query sent by a router.
 Multicast Listener Done: Message issued by a host when it leaves a host group and is the last mem-
ber of that group on the network segment.

ICMPv6 also supports   Neighbor Discovery (ND). ND (RFC 2461) is a collection of fi ve ICMPv6 messages 
that manage node-to-node communication on a link. Nodes on the same link are also called neighbor-
ing nodes. ND replaces Address Resolution Protocol (ARP), ICMPv4 Router Discovery, and the ICMPv4 
Redirect message. Table 7.1 identifi es key ND processes [MSD200401]. Hosts (e.g., SIP proxies, H.323 
gatekeepers, etc.) make use of ND to discover neighboring routers, addresses, address prefi xes, and other 
confi guration parameters. Routers make use of ND to advertise their presence, host confi guration parame-

•

•
•

•

•

•

•

•

•
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ters, and on-link prefi xes; also, they use of ND to inform hosts of a better next-hop address to forward PDUs 
for a specifi c destination. Nodes make use of ND to resolve the link-layer address of a neighboring node to 
which an IPv6 PDU is being forwarded. Nodes also use ND to determine when the link-layer address of a 
neighboring node has changed, and whether IPv6 PDUs can be sent to and received from a neighbor. 

Table 7.1: Key ND processes.

Process Description

  Router Discovery The process by which a host discovers the local routers on an attached link and automatically 
confi gures a default router. In IPv4, this is equivalent to using ICMPv4 router discovery to 
confi gure a default gateway.

  Prefi x Discovery The process by which a host discovers the network prefi xes for local destinations.

  Parameter Discovery The process by which a host discovers additional operating parameters, including the link 
Maximum Transmission Unit (MTU) and the default hop limit for outbound PDUs. 

  Address 
Autoconfi guration

The process for confi guring IP addresses for interfaces in either the absence of a stateful address 
confi guration server, such as Dynamic Host Confi guration Protocol version 6 (DHCPv6).

  Address Resolution The process by which a node resolves a neighboring node’s IPv6 address to its link-layer address. 
The resolved link-layer address becomes an entry in a neighbor cache in the node. The link layer 
address is equivalent to ARP in IPv4, and the neighbor cache is equivalent to the ARP cache. The 
neighbor cache displays the interface identifi er for the neighbor cache entry, the neighboring 
node IPv6 address, the corresponding link-layer address, and the state of the neighbor cache 
entry. 

  Next-Hop Determination The process by which a node determines the IPv6 address of the neighbor to which a PDU is 
being forwarded. The determination is made based on the destination address. The forwarding 
or next-hop address is either the destination address of the PDU being sent or the address of 
a neighboring router. The resolved next-hop address for a destination becomes an entry in a 
node’s destination cache, also known as a route cache. The route cache displays the destination 
address, the interface identifi er and next-hop address, the interface identifi er and address used 
as a source address when sending to the destination, and the path MTU for the destination. 

  Neighbor Unreachability 
Detection

The process by which a node determines that neighboring hosts or routers are no longer 
available on the local network segment. After the link-layer address for a neighbor has been 
determined, the state of the entry in the neighbor cache is tracked. If the neighbor is no longer 
receiving and sending back PDUs, the neighbor cache entry is eventually removed. 

  Duplicate Address 
Detection

The process by which a node determines that an address considered for use is not already in use 
by a neighboring node. This is equivalent to the use of gratuitous ARP frames in IPv4.

  Redirect Function The process by which a router informs a host of a better fi rst-hop IPv6 address to reach a 
destination. This is equivalent to the function of the IPv4 ICMP Redirect message.

A useful feature supported in IPv6 is multicasting. Besides a variety of protocol-level functionally supported 
by multicasting (for example, the just-mentioned MLD and ND), one can also use this mechanism to support 
VoIP/IPTV functionality (e.g., audioconferencing/bridging and program distribution). (The use of multicast-
ing in IP networks is defi ned in RFC 1112 which describes addresses and host extensions for the way IP 
hosts support multicasting—the concepts originally developed for IPv4 also apply to IPv6.)  Multicast traffi c 
is promulgated by utilizing a single address in the IPv6 PDU header, but is processed by multiple hosts. 
Hosts and devices listening on a specifi c multicast address comprise a multicast group; these devices receive 
and process traffi c sent to the group address. IPv6 multicast addresses have the Format Prefi x 1111 1111 
(0xFF). 
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Group membership in multicast lists is dynamic, allowing hosts to join and leave the group at any time. 
Groups can be from multiple network segments (links or subnets) if the connecting routers support forward-
ing of multicast traffi c and group membership information [MSD200401]. A host (for example, a VoIP SIP 
proxy or a H.323 gatekeeper) can send traffi c to a group address without belonging to the group. In fact, to 
join a group, a host sends a group membership message. Multicast routers periodically poll membership 
status. Each multicast group is identifi ed by one IPv6 multicast address. All group members who listen and 
receive IPv6 messages sent to the group address share the group address. Some of the reserved IPv6 multi-
cast addresses are (RFC 2375) shown in Table 7.2.

Table 7.2: Reserved multicast IPv6 addresses.

IPv6 Multicast 
Address

Description

FF02::1 The all-nodes address used to reach all nodes on the same link.

FF02::2 The all-routers address used to reach all routers on the same link.

FF02::4 The address used to reach all Distance Vector Multicast Routing Protocol (DVMRP) multicast routers 
on the same link.

FF02::5 The address used to reach all Open Shortest Path First (OSPF) routers on the same link.

FF02::1:FFXX:XXXX The solicited-node address used in the address resolution process to resolve the IPv6 address of 
a link-local node to its link-layer address. The rightmost 24 bits (XX:XXXX) of the solicited-node 
address are the rightmost 24 bits of an IPv6 unicast address.

7.3  IPv6 Addressing Mechanisms

7.3.1 Conventions

The  IPv6 128-bit address is divided along 16-bit boundaries. Each 16-bit block is then converted to a 4-digit 
hexadecimal number, separated by colons. The resulting representation is called colon-hexadecimal. This 
approach should now be familiar to the reader having covered this in Chapters 1 and 6. This is in contrast 
to the 32-bit IPv4 address represented in dotted-decimal format, divided along 8-bit boundaries, and then 
converted to its decimal equivalent, separated by periods. 

The following examples show 128-bit IPv6 address in binary form:

Address 1: 0010000111011010000000001101001100000000000000000010111100111011

0000001010101010000000001111111111111110001010001001110001011010

Address 2: 0010000111011010000000001101001100000000000000000010111100111011

0000001010101010000000001111111100000000000000001001110001011010

Address 3: 0010000111011010000000001101001100000000000000001001110001011010

0000001010101010000000001111111100000000000000001001110001011010
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Address 4: 0010000111011010000000001101001100000000000000001001110001011010

0000001010101010000000001111111100000000000000000010111100111011

The following example shows these same addresses divided along 16-bit boundaries:

Address 1: 0010000111011010:0000000011010011:0000000000000000:0010111100111011:

0000001010101010:0000000011111111:1111111000101000:1001110001011010:

Address 2: 0010000111011010:0000000011010011:0000000000000000:0010111100111011:

0000001010101010:0000000011111111:0000000000000000:1001110001011010:

Address 3: 0010000111011010:0000000011010011:0000000000000000:1001110001011010:

0000001010101010:0000000011111111:0000000000000000:1001110001011010:

Address 4: 0010000111011010:0000000011010011:0000000000000000:1001110001011010:

0000001010101010:0000000011111111:0000000000000000:0010111100111011:

The following shows each 16-bit block in the address converted to hexadecimal and delimited with colons.

Address 1: 21DA:00D3:0000:2F3B:02AA:00FF:FE28:9C5A

Address 2: 21DA:00D3:0000:2F3B:02AA:00FF:0000:9C5A

Address 3: 21DA:00D3:0000: 9C5A:02AA:00FF:0000:9C5A

Address 4: 21DA:00D3:0000: 9C5A:02AA:00FF:0000:2F3B

IPv6 representation can be further simplifi ed by removing the leading zeros (trailing zeros are not removed) 
within each 16-bit block. However, each block must have, in the abbreviated nomenclature, at least a single 
digit. The following example shows the addresses without the leading zeros:

Address 1: 21DA:D3:0:2F3B:2AA:FF:FE28:9C5A

Address 2: 21DA:D3:0:2F3B:2AA:FF:0:9C5A

Address 3: 21DA:D3:0: 9C5A:2AA:FF:0:9C5A

Address 4: 21DA:D3:0: 9C5A:2AA:FF:0:2F3B

Some types of addresses contain long sequences of zeros. In IPv6 addresses, a contiguous sequence of 16-bit 
blocks set to 0 in the colon-hexadecimal format can be compressed to :: (known as double-colon). 
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The following list shows examples of compressing zeros: 

The address 21DA:0:0:0:2AA:FF:9C5A:2F3B can be compressed to 21DA::2AA:FF:9C5A:2F3B. 
The multicast address of FF02:0:0:0:0:0:0:2 can be compressed to FF02::2. 

Note: Zero-compression can only be used to compress a single contiguous series of 16-bit blocks expressed 
in colon-hexadecimal notation – one cannot use zero-compression to include part of a 16-bit block; e.g., one 
cannot abbreviate FF01:30:0:0:0:0:0:8 as FF01:3::8.) Also, zero-compression can be used only once in an 
address, which enables one to determine the number of 0 bits represented by each instance of a double-colon 
(::). To determine how many 0 bits are represented by the ::, one can count the number of blocks in the com-
pressed address, subtract this number from 8, and then multiply the result by 16. For example, in the address 
FF02::2, there are two blocks (the FF02 block and the 2 block); the number of bits expressed by the :: is 96 
(= (8 – 2) × 16) [MSD200401].

7.3.2 Addressing issues/reachability
Every IPv6 address has a  reachability scope. IPv6 interfaces can have multiple addresses that have different 
reachability scopes. For example, a node may have a link-local address, a site-local address, and a global 
address. Table 7.3 shows the address and associated reachability scopes. The reachability of Node-local 
addresses is “the same node”; the reachability of Link-local addresses is “the local link”; the reachability of 
Site-local addresses is “the private intranet”; and, the reachability of Global addresses is “the IPv6-enabled 
Internet.”

Table 7.3: Address and associated reachability scopes.

Address scope/ 
Reachability

Description

Node-local addresses 
to reach same node

Used to send PDUs to the same node: 
•   Loopback address (PDUs addressed to the loopback address are never sent on a link or 

forwarded by an IPv6 router—this is equivalent to the IPv4 loopback address)
•   Node-local multicast address

Link-local addresses to 
reach local link (*)

Used to communicate between hosts (and/or VoIP devices) on the link; these addresses are always 
confi gured automatically: 
•   Unspecifi ed address. It indicates the absence of an address, and is typically used as a source 

address for PDUs that are attempting to verify the uniqueness of a tentative address (it is 
equivalent to the IPv4 unspecifi ed address.)  The unspecifi ed address is never assigned to an 
interface or used as a destination address. 

•   Link-local Unicast address
•   Link-local Multicast address

Site-local addresses 
to reach the private 
intranet (internetwork) 
(*)

Used between nodes that communicate with other (VoIP) nodes in the same site; site-local 
addresses are confi gured by router advertisement: 
•   Site-local Unicast address—these addresses are not reachable from other sites, and routers must 

not forward site-local traffi c outside of the site. Site-local addresses can be used in addition to 
aggregatable global unicast addresses. 

•   Site-local Multicast address

Global addresses to 
reach the Internet 
(IPv6-enabled); 
also known as 
aggregatable global 
unicast addresses

Globally routable and reachable addresses on the IPv6 portion of the Internet (they are equivalent 
to public IPv4 addresses); global addresses are confi gured by router advertisement: 
•   Global Unicast address
•   Other scope Multicast address 
Global addresses are designed to be aggregated or summarized to produce an effi cient, hierarchical 
addressing and routing structure.

(*) When one specifi es a link-local or site-local address, one needs to also specify a scope ID, which further defi nes the 
reachability scope for these (nonglobal) addresses.

•
•
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Similarly to the IPv4 address space, the IPv6 address space is partitioned according to the value of high 
order bits (known as a Format Prefi x) in the address. Table 7.4 depicts the IPv6 address space allocation 
by Format Prefi xes. The (current) set of unicast addresses that can be employed by IPv6 nodes consists of 
aggregatable global unicast addresses, link-local unicast addresses, and site-local unicast addresses (these 
addresses represent about 12.6% of the entire IPv6 address space, but it is still ~3.4 × 1037). The prefi x is 
the portion of the address that indicates the bits that have fi xed values or are the bits of the network identi-
fi er. Prefi xes for IPv6 routes and subnet identifi ers are expressed in the same way as classless interdomain 
routing notation for IPv4. An IPv6 prefi x is written in address/prefi x-length notation (IPv4 environments use 
a dotted decimal representation known as the subnet mask in order to establish the network prefi x of a given 
IP address; the subnet mask approach is not used in IPv6, rather, only the prefi x-length notation is used.)

Table 7.4: IPv6 address space allocation.

Address Space
Allocation

Format Prefi x Percentage of 
the Address 

Space

Hex Notation Fraction of the 
Address Space

Reserved 0000 0000 0.391% 0x00 1/256 

Reserved for NSAP allocation 0000 001 0.781% 0x0 001 1/128 

Aggregatable global unicast addresses 001 12.500% 001 1/8 

Link-local unicast addresses 1111 1110 10 0.098% 0xFE 10 1/1024 

Site-local unicast addresses 1111 1110 11 0.098% 0xFE 11 1/1024 

Multicast addresses 1111 1111 0.391% 0xFF 1/256 

The remainder of the IPv6 address Unassigned 85.742%

Note: 0xY is the hexadecimal notation for digit “Y”.

As noted earlier, the prefi x is the part of the address that indicates the bits that have fi xed values or are the 
bits of the network identifi er. For example, 

 21DA:D3::/48 is a 48-bit route prefi x 

21DA 00D3 0000 16 bits 16 bits 16 bits 16 bits 16 bits

<- route prefi x ->

 

 and, 

21DA 00D3 0000 2F3B 16 bits 16 bits 16 bits 16 bits

<- route prefi x -> <- subnet 
prefi x ->

16 bits 16 bits 16 bits 16 bits
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7.3.3 Scope/Reachability
The scope ID identifi es a specifi c area within the reachability scope for nonglobal addresses (recall that the 
reachability scope is related to the address scope as shown in Table7.5.) A node identifi es each area of the 
same scope with a unique scope ID. 

Table 7.5: Address scope vs. reachability scope.

Address scope Reachability Scope

Node-local Same node

Link-local Local link (LAN)

Site-local A private internetwork (intranet)

Figure 7.8 shows an example how the scope ID indicates an interface or site identifi er, depending on the 
scope of the address. In this example the node is connected to three links and two sites. In this example,

The sites (specifi cally, site identifi ers 1 and 2) are identifi ed by the site-local (intranet) scope ID. 
The links (specifi cally, interface identifi ers 1, 2, and 3) are identifi ed by the link-local (LAN) scope 
ID. 

The scope ID identifies the area of the network for which the  
destination is intended. Each site is assigned a site identifier. 

The scope ID identifies the network interface over which  
traffic is sent and received. The scope ID indicates the  
64-bit interface identifier of the network interface. 

Network Interface 
Network Interface 

Network Interface 

For Site-Local 
Addresses 

Site Identifier 

Scope ID 
Indicates 

Address 
Scope 

For Link-Local 
Addresses 

Interface  
Identifier 

Site Identifier 1 Site Identifier 2 Site-Local Scope ID 

Link-Local Scope ID Interface Identifier 1 Interface Identifier 2 Interface Identifier 3 

Figure 7.8: Example of  logical node in IPv6.

   The notation utilized to specify the scope ID with an address is Address%ScopeID. Figure 7.9 depicts an 
example of how the nodes use the scope ID to identify site scope zones. As one can see in the fi gure, the 
interface identifi er scope ID is used only by the local node; other nodes may use a different network inter-
face or site identifi er for the same link, e.g., the link that has scope ID (interface identifi er) 4 for Node A has 
scope ID 1 for Node B. For example of Figure 7.9, the following describes the link-local address FE70::3 
qualifi ed with a scope ID on the link between Node A and Node B: 

•
•
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For Node A, the address is FE70::3%4 

For Node B, the address is FE70::3%1 

Each attached zone of the same scope must be assigned a different site identifi er, but attached zones of dif-
ferent scopes can re-use the same index.

Router 
IPv6 

(or IPv6/IPv4 

SIP Server 

Layer 2 
Switch 

Carrier’s 
Edge Label 

Switch Router 
IPv6 (or IPv6/IPv4 

Site Identifier 1 
Interface Identifier 1 

Site Identifier 1 
Interface Identifier 1 

Site Identifier 2 
Interface Identifier 2 

Site Identifier 3 
Interface Identifier 3 

Site Identifier 4 
Interface Identifier 4 

Site Scope Zone A 

Site Scope Zone B 

Scope/Interface View Example in VoIP 

Node A 

Node B 

Figure 7.9: How the nodes use the scope ID to identify site scope zones.

Implicit in Figure 7.9 is a topology hierarchy, as follows:

Public topology: The collection of larger and smaller ISPs that provides access to the IPv6 Internet.
Site topology: The collection of subnets within an organization’s site (namely, this is the intranet, 
although it need not be strictly contained at a single location—the term site here has more an impli-
cation related to an organization’s domain rather than a single physical site.)
Interface identifi er topology: Identifi es a specifi c interface on a subnet within an organization’s site.

7.3.4  Address Types
This section looks at some more detailed information related to address types.

Unicast IPv6 Addresses
A unicast address identifi es a single interface within the scope of the unicast address type. This could be a 
VoIP handset in a VoIPv6 environment. Utilizing an up-to-date unicast routing topology, PDUs addressed to 
a unicast address are delivered to a single interface. Unicast addresses fall into the following categories:

•
•

•
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Aggregatable global unicast addresses (e.g., used to reach an Internet-connected VoIP phone);
Link-local addresses (e.g., used to reach an VoIP phone on the same LAN segment);
Site-local addresses (e.g., used to reach an VoIP phone on corporate intranet);
Special addresses, including unspecifi ed and loopback addresses; and, 
Compatibility addresses, including 6to4 addresses. 
Aggregatable Global Unicast Addresses

The IPv6-based Internet has been designed to support effi cient, hierarchical addressing and routing (this is in 
contrast IPv4-based Internet which has a mixture of both fl at and hierarchical routing.)  Aggregatable global 
unicast addresses are globally-routable and globally-reachable on the IPv6 portion of the (IPv6) Internet. 
The region of the Internet over which the aggregatable global unicast address is unique (the scope) is the en-
tire IPv6 Internet. As we saw in Table 7.4, aggregatable global unicast addresses (aka global addresses), are 
identifi ed by the Format Prefi x of 001. This type of addressing can be used to reach an Internet-connected 
VoIP (SIP) phone (say, the author’s phone given to him by his company and utilized by him while traveling 
on business and using the Internet for connectivity), from any origination point, be such origination point 
on the fi rm’s intranet or on any other-company’s intranet, or even at another Internet point. This enables the 
end-to-connectivity that we have been alluding to throughout this book. 

Figure 7.10 shows how the fi elds within the aggregatable global unicast address create a three-level topologi-
cal structure with globally-unique addresses. The fi rst 48 bits are comprised of the 3-bit prefi x; the   Top Level 
Aggregator (TLA) id comprises the next 13 bits; the next 8 bits are reserved; and, the next 24 bits represent 
the   Next Level Aggregator (NLA) id. This combination gives the fi rst two levels. The next 16 bits represents 
the site topology, namely, the   Site Level Aggregator (SLA) id. The SLA is used by a fi rm or organization to 
identify subnets within its site (intranet); the organization can use the 16 bits within its site to create 65,536 
subnets or multiple levels of addressing hierarchy, which, can also facilitate the routing process (note that 
with a 2-octet of address space for subnetting, an aggregatable global unicast prefi x assigned to a fi rm is 
equivalent to that fi rm being granted an IPv4 Class A network ID; the structure of the customer’s network is 
not visible to the ISP). Finally, the Interface ID point to the interface of a node on a specifi c subnet. 

Addresses of this type can, by design, be aggregated (summarized) to produce an effi cient routing infrastructure. 

Interface ID 

48 Bits 16 Bits 64 Bits 

24 Bits 13 Bits Format  
Prefix 

8 Bits 16 Bits 64 Bits 

Public Topology Site Topology Interface Identifier 

001 TLA ID NLA ID SLA ID Res 
Indicates the Top Level Aggregator (TLA) for the address. The TLA identifies 
the highest level in the routing hierarchy. TLAs are administered by internet 
Assigned Numbers Authority (IANA) and allocated to local internet registers 
that, in turn, allocate individual TLA IDs to large, global ISPs). A 13-bit field 
allows up to 8,192 dirrerent TLA IDs. Routers in the highest level of the IPvs 
Internet routing hierarchy do not have a default route. These default-free  
routers have routes with 16-bit prefixes that correspond to the allocated TLAs. 

Indicates the Next Level Aggregator (NLA) for the address, and is used 
to identify a specific customer site. The NLA ID allows an ISP to create 
multiple levels of addressing hierarchy, to organize addressing, and 
routing and to identify sites. The structure of the ISP’s network is not 
visible to default-free routers. 

Indicates the Site Level Aggregator (SLA) for the address, and is used 
by an organization to identify subnets within its site. The organization 
can use the 16 bits within its site to create 65,536 subnets or multiple 
levels of addressing hierarchy and an efficient routing infrastructure. 

Indicates the interface of a node on a specific subnet. 

Reserved for future use in expanding the size of either the TLA ID or the 
Next Level Aggregator (NLA) ID. 

Figure 7.10:  Aggregatable global unicast address.

•
•
•
•
•
•
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 Link-Local (Unicast) Addresses 
Link-local addresses are utilized by nodes when communicating with neighboring nodes on the same link. 
For example, link-local addresses are used to communicate between hosts on the link on a single link IPv6 
network without the intervention/utilization of a router (e.g., in a LAN segment, a VLAN, etc.). This type 
of addressing can be used to reach a company colleague an LAN-connected VoIP phone (say, for colleagues 
working in the same building—assuming that both are on the same LAN.)

The scope of a link-local address is the local link. An IPv6 router does not forwards link-local traffi c beyond 
the link. A link-local address is required for Neighbor Discovery processes and is always automatically 
confi gured, even in the absence of all other unicast addresses. As seen in Table 7.4, link-local addresses are 
identifi ed by the Format Prefi x of 1111 1110 10. The address starts with FE (for example 1111 1110 1000 
is 0xFE8; 1111 1110 1001 is 0xFE9; 1111 1110 1010 is 0xFEA; and, 1111 1110 1011 is 0xFEB.)  With the 
64-bit interface identifi er, the prefi x for link-local addresses is, by convention, always FE80::/64. 

 Site-Local (Unicast) Addresses
Site-local addresses are utilized between nodes that communicate with other nodes in the same site (or-
ganization). The scope of a site-local address is the site, which is the organization intranet (internetwork.)  
This type of addressing can be used to reach a company colleague an intranet-connected VoIP phone, say 
for colleagues working in the same company but perhaps at two company locations in two cities (in this ar-
rangement, however, those VoIP phones would not be directly reachable from anywhere that happens to be 
on an IP-network—see next paragraph—they may, nonetheless, be reacheable through a gateway.)

As seen in Table 7.4, site-local addresses are identifi ed by the Format Prefi x of 1111 1110 11 (they are 
equivalent to the IPv4 private address space, 10.0.0.0/8, 172.16.0.0/12, and 192.168.0.0/16.) Hence, if there 
are private intranets that do not have a direct, routed connection to the IPv6 Internet they can use site-lo-
cal addresses without confl icting with aggregatable global unicast addresses; however, one should keep in 
mind that increasingly virtually all private intranets have connections to the Internet. Also, if end-to-end 
anytime anyplace VoIP communication is to be supported, aggregatable global unicast may be indicated 
for each VoIP device. This is because site-local addresses are not reachable from other sites (namely, other 
organizations), and routers must not forward site-local traffi c outside of the site (organization). Fortunately 
aggregatable global unicast addresses may be assigned to VoIP devices in addition to site-local addresses. 
Unlike link-local addresses, site-local addresses are not automatically confi gured and must be assigned 
through the stateless address confi guration process [MSD200401]. 

Referring to Figure 7.8, one notes that the fi rst 48-bits are always fi xed for site-local addresses, beginning 
with FEC0::/48. Beyond the 48-fi xed bits is a 16-bit subnet identifi er (Subnet ID fi eld) with which the net-
work administrator can create subnets for use within the organization (one can create up to 65,536 subnets in 
a fl at subnet structure; or, one can partition the high-order bits of the Subnet ID fi eld to create a hierarchical 
and aggregatable routing infrastructure.) Beyond the Subnet ID fi eld is a 64-bit Interface ID fi eld that identi-
fi es a specifi c interface on a subnet. 

Notice from this discussion that the  aggregatable global unicast address and the  site-local address share the 
same structure beyond the fi rst 48 bits of the address. In aggregatable global unicast addresses, the SLA ID 
identifi es the subnet within an organization and for site-local addresses, the Subnet ID performs the same 
function. Because of this characteristic, one can assign a specifi c subnet number to identify a subnet that is 
used for both site-local and aggregatable global unicast addresses.
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 Unspecifi ed (Unicast) Address
The unspecifi ed address, 0:0:0:0:0:0:0:0 (that is, ::) indicates the absence of an address, and is typically used 
as a source address for PDUs that are attempting to verify the uniqueness of a tentative address. It is equiva-
lent to the IPv4 unspecifi ed address of 0.0.0.0. The unspecifi ed address is never assigned to an interface or 
used as a destination address.

 Loopback (Unicast) Address
The loopback address, 0:0:0:0:0:0:0:1 or ::1, identifi es a loopback interface, enabling a node to send PDUs 
to itself. It is equivalent to the IPv4 loopback address of 127.0.0.1. PDUs addressed to the loopback address 
are never sent on a link or forwarded by an IPv6 router.

 Compatibility (Unicast) Addresses
IPv6 provides what are called 6to4 addresses to facilitate the coexistence of IPv4-to-IPv6 environments and 
the migration from the IPv4 to the IPv6 environment. The 6to4 address is used for communicating between 
two nodes operating both IPv4 stacks and IPv6 stacks over an IPv4 routing infrastructure (more on this in 
Chapter 8). The 6to4 address is formed by combining the prefi x 2002::/16 with the 32 bits of the public IPv4 
address of the node, forming a 48-bit prefi x. For example, for the IPv4 address of 231.207.10.11, the 6to4 
address prefi x is 2002:836B:1::/48. 

 Multicast IPv6 Addresses
A multicast address is an addressing mechanism that identifi es multiple interfaces; it is used for one-to-
many communication. As seen in Table 7.4, IPv6 multicast addresses have the Format Prefi x of 1111 1111; 
namely, the multicast address always begins with 0xFF. With the appropriate multicast routing topology, 
PDUs addressed to a multicast address are delivered to all interfaces that are identifi ed by the address. Mul-
ticast addresses cannot be utilized as source addresses. Multicast addresses fl ags, scope, and multicast group, 
as shown if Figure 7.11.

To identify all nodes for the node-local and link-local scopes, the following multicast addresses are defi ned: 

 FF01::1 (node-local scope all-nodes address) 

 FF02::1 (link-local scope all-nodes address) 

To identify all routers for the node-local, link-local, and site-local scopes, the following multicast addresses 
are defi ned: 

 FF01::2 (node-local scope all-routers address) 

 FF02::2 (link-local scope all-routers address) 

 FF05::2 (site-local scope all-routers address) 
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Group ID 

112 Bits 4 Bits 4 Bits 8 Bits 

001 TLA ID Res 

The Group ID field identifies the multicast group and is unique within the scope:
•  Permanently assigned group IDs are independent of the scope.
•  Transient group IDs are only relevant to a specific scope.

Multicast addresses from FF01:: through FF0F:: are reserved, well-known addresses. It 
is possible to have 2112 group IDs. However, because of the way in which IPv6 multicast 
addresses are mapped to Ethernet multicast MAC addresses, RFC 2373 recommends 
assigning the Group ID from the low-order 32 bits of the IPv6 multicast address and 
setting the remaining original group ID bits to 0. By using only the low-order 32 bits, each 
group ID maps to a unique network interface multicast MAC address.

Indicates the scope of the IPv6 internetwork for which the multicast traffic is intended. 
In addition to information provided by multicast routing protocols, routers use the 
multicast scope to determine whether multicast traffic can be forwarded.  
Scope Field Value Scope 
 1  Note-local 
 2  Link-local 
 5  Site-local 
 8  Organization-local 
 E  Global  
For example, traffic with the multicast address of FF02::2 has a link-local scope.  
An IPv6 router never forwards this traffic beyond the local link. 

Indicates flags that are set on the multicast address. As of RFC 2373, the only flag 
defined is the Transient (T) flag. The T flag uses the low-order bit of the Flags field.

•  If 0, the multicast address is a permanently assigned, well-known multicast 
   address allocated by the Internet Assigned Numbers Authority (IANA).
•  If 1, the multicast address is a not permanently assigned, or transient.

Figure 7.11: Multicast address.

Next, we briefl y look at solicited-node addresses. The solicited-node address supports effi cient querying 
of network nodes for the purpose of address resolution. IPv6 uses the Neighbor Solicitation message to 
perform address resolution. This multicast address consists of the prefi x FF02::1:FF00:0/104 along with 
the last 24-bits of the IPv6 address that is being resolved. In contrast to IPv4 where the ARP Request frame 
is sent via a MAC-level broadcast, and in doing so imposing on all nodes on the network segment, in IPv6 
the solicited-node multicast address is used as the Neighbor Solicitation message destination. This avoids 
imposing on all IPv6 nodes on the local link by using the local-link scope all-nodes address. 

 Anycast IPv6 Addresses
An anycast address identifi es multiple interfaces, but not an entire broadcast universe. This could be used, 
for example, to support VoIP Voice Mail group distribution. With the appropriate routing topology, PDUs 
addressed to an anycast address are delivered to a single interface for further appropriate handling (a PDU 
addressed to an anycast address is delivered to the nearest interface identifi ed by the address.)  To make 
possible the delivery to the nearest anycast group member, the routing infrastructure must be aware of the 
interfaces that are assigned anycast addresses and must know their distances in terms of routing metrics. At 
present, anycast addresses are used only as destination addresses and are assigned only to routers. 

7.3.5  Addresses for Hosts and Routers
In contrast to an IPv4 where a host with a single network adapter has a single IPv4 address assigned to that 
adapter, an IPv6 host (e.g., a SIP proxy) typically has multiple IPv6 addresses (even in the case of a single 
interface.)  (When a computer is confi gured with more than one IP address, it is referred to as a multihomed 
system.) IPv6 host and router address usage is as follows [MSD200401]:
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Host: Typical IPv6 hosts are logically multihomed because they have at least two addresses with which they 
can receive PDUs. Each host is assigned the following unicast addresses: 

A link-local address for each interface. This address is used for local traffi c. 
An address for each interface. This could be a routable site-local address and one or more global 
addresses. 
The loopback address (::1) for the loopback interface. 

Additionally, each host is listening for traffi c on the following multicast addresses: 

The node-local scope all-nodes address (FF01::1).
The link-local scope all-nodes address (FF02::1). 
The solicited-node address for each unicast address on each interface. 
The multicast addresses of joined groups on each interface. 

Router: An IPv6 router is assigned the following unicast addresses: 
A link-local address for each interface. This address is used for local traffi c. 
An address for each interface. This could be a routable site-local address and one or more global 
addresses. 
The loopback address (::1) for the loopback interface. 

An IPv6 router is assigned the following anycast addresses: 

A subnet-router anycast address for each subnet 
Additional anycast addresses (optional) 

Each router is listening for traffi c on the following multicast addresses: 

The node-local scope all-nodes address (FF01::1) 
The node-local scope all-routers address (FF01::2) 
The link-local scope all-nodes address (FF02::1) 
The link-local scope all-routers address (FF02::2) 
The site-local scope all-routers address (FF05::2) 
The solicited-node address for each unicast address on each interface 
The addresses of joined groups on each interface 

 Interface Determination
As noticed in Figure 7.8, the last 64 bits of an IPv6 address are the interface identifi er that is unique to the 
64-bit prefi x of the IPv6 address. There are two ways for interface identifi er determination: (1) derived 
from the Electrical and Electronic Engineers (IEEE) Extended Unique Identifi er (EUI)-64 address; and, (2) 
randomly-generated and randomly-changed over time. IETF RFC 2373 stipulates that unicast addresses that 
use format prefi xes 001 through 111 must use a 64-bit interface identifi er that is derived from the EUI-64 
address. Related to the second approach, RFC 3041 states that to provide a level of anonymity, the identifi er 
can be randomly generated, and changed over time.

EUI-64 addresses are either assigned to a network adapter or derived from IEEE 802 addresses. LAN 
Network Interface Cards (NICs) that (at this point in the development of hardware) typically comprise the 

•
•

•

•
•
•
•

•
•

•

•
•

•
•
•
•
•
•
•
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physical interface (network adapters) of hosts and devices identifi ers use the 48-bit IEEE 802 address. This 
address (also called the physical, hardware, or   Media Access Control (MAC) address) consists of two parts: 
(1) Company ID; and (2) Extension ID. The Company ID is 24-bit ID uniquely assigned to each manufac-
turer of network adapters; this is also known as the manufacturer ID. The Extension ID (also known as the 
board ID) is a 24-bit uniquely assigned to each network adapter at the time of assembly. The IEEE 802 ad-
dress is a globally-unique 48-bit address. The   IEEE EUI-64 address is a newly-defi ned standard for network 
interface addressing. The company ID is 24-bits in length but the extension ID is 40 bits, supporting a larger 
address space for a network adapter manufacturer. See Figure 7.12. 

xxxxxxxx xxxxxxxx xxxxxxxx 

xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx 

Original Address 

Extended Unique Identifier 

24 Bits 24 Bits 

40 Bits 

IEEE Administered Company ID Manufacturer Selected Extension ID 

Manufacturer Selected Extension ID 

ccccccug cccccccc cccccccc 

The U/L bit is the seventh bit of the first byte and is used to determine 
whether the address is universally or locally administered. 

•  If 0, the IEEE, through the designation of a unique company  
   ID, has administered the address. 
•  If 1, the address locally administered. The network administrator   
   has overridden the manufactured addres and specified a  
   different address. 

 

The I/G bit is the low-order bit of the first byte and is used to  
determine whether the address is an individual address (unicast) or 
a group address (multicast). 

•  If 0, the address is a unicast address. 
•  If 1, the address is a multicast address. 

Universal/Local (U/L) 

Individual/Group (I/G) 

Figure 7.12:  IEEE address along with the extended unique identifi er.

To generate an EUI-64 address from an IEEE 802 address, 16 bits of 11111111 11111110 (0xFFFE) are 
inserted into the IEEE 802 address between the company ID and the extension ID. See Figure 7.13. 

xxxxxxxx xxxxxxxx xxxxxxxx 

xxxxxxxx xxxxxxxx xxxxxxxx 

MAC Address 

Extended Unique Identifier 

24 Bits 24 Bits 

24 Bits 24 Bits 

64 Bits 

IEEE Administered Company ID Manufacturer Selected Extension ID 

ccccccug cccccccc cccccccc 

ccccccug cccccccc cccccccc 11111111 11111110 

0xFF 0xFE

Figure 7.13: Extended unique identifi er generated from MAC address.
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 Mapping EUI-64 addresses to IPv6 interface identifi ers
An IPv6 unicast address utilizes a 64-bit interface identifi er. To obtain this identifi er from a EUI-64 address, 
the U/L bit in the EUI-64 address is complemented (if it is a 1, it is set to 0; if it is a 0, it is set to 1). The 
resulting bitstream is used as a universally-administered unicast EUI-64 address.

 Mapping IEEE 802 Addresses to IPv6 Interface Identifi ers
To obtain an IPv6 interface identifi er from an IEEE 802 address, one must fi rst map the IEEE 802 address 
to an EUI-64 address, as discussed previously; then one must complement (fl ip) the U/L bit. The resulting 
bitstream is used as a universally-administered unicast IEEE 802 address.

 Randomly-Generated Interface Identifi ers
IPv6 address identifi ers remain static over time, hence, for security reasons, a capability is needed to gener-
ate temporary addresses. (Because of NAT/DHCP, in an IPv4 environment it is diffi cult to track a user’s 
traffi c on the basis of IP address.) (However, it should be noted that many—if not most—hacking techniques 
do not rely on knowing the IP address of a specifi c device on a network; instead, such techniques simply 
look for any available entry point; after that, a deposited Trojan Horse may do the job perpetrating a full 
infraction.)

In IPv6 after the connection is made through router discovery and stateless address autoconfi guration, the 
end-user device is assigned a 64-bit prefi x. If the interface identifi er is based on a EUI-64 address (which, as 
we saw earlier, is derived from the static IEEE 802 address), the traffi c of a specifi c node can be identifi ed; 
this opens up the possibility to track a specifi c user (should that be of interest to an intruder). To address this 
issue, an alternative IPv6 interface identifi er can be randomly generated and changed over time, as described 
in RFC 3041. For IPv6 systems that have storage capabilities, a history value is stored; when the IPv6 proto-
col is initialized, a new interface identifi er is created through the following process (the IPv6 address based 
on this random interface identifi er is known as a temporary address): 

Retrieve the history value from storage and append the interface identifi er based on the EUI-64 ad-
dress of the adapter. 
Compute the Message Digest-5 (MD5) one-way encryption hash over the quantity in step a. 
Save the last 64 bits of the MD5 hash computed in step b as the history value for the next interface 
identifi er computation. 
Take the fi rst 64 bits of the MD5 hash computed in Step b and set the seventh bit to zero. The sev-
enth bit corresponds to the U/L bit which, when set to 0, indicates a locally administered interface 
identifi er. The result is the interface identifi er. 

Temporary addresses are generated for public address prefi xes that use stateless address autoconfi guration. 

7.4  Confi guration Methods
As we have seen in previous chapters, the IPv6 protocol can use two address confi guration methods: (1) 
Automatic confi guration; and, (2) Manual confi guration. Address autoconfi guration for stateless addresses is 
described in RFC 2462. Autoconfi gured addresses exist in one or more of the states depicted in Figure 7.14: 
tentative, preferred, deprecated, valid (= preferred + deprecated), and, invalid. IPv6 nodes (hosts and routers) 
automatically create unique link-local addresses for all LAN interfaces that appear to be Ethernet interfaces. 
IPv6 hosts use received Router Advertisement messages to automatically confi gure [MSD200401]: 

A default router; 
The default setting for the Hop Limit fi eld in the IPv6 header; 
The timers used in Neighbor Discovery processes; 

•

•
•

•

•
•
•
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The Maximum Transmission Unit (MTU) of the local link; 
The list of network prefi xes that are defi ned for the link. Each network prefi x contains both the IPv6 
network prefi x and its valid and preferred lifetimes. If indicated, a network prefi x is combined with 
the interface identifi er to create a stateless IPv6 address confi guration for the receiving interface. A 
network prefi x also defi nes the range of addresses for nodes on the local link; 
6to4 addresses on a 6to4 tunneling interface for all public IPv4 addresses that are assigned to the 
computer (some implementations); 
Intrasite Automatic Tunnel Addressing Protocol (ISATAP) addresses on an automatic interface for 
all IPv4 addresses that are assigned to the computer (some implementations); 
The stack to query for IPv6 ISATAP routers in an IPv4 environment (some implementations); and,
Routes to off-link prefi xes, if the off-link address prefi x is advertised by a router (some implemen-
tations). 

The address can send and receive unicast traffic. 
This state covers both the preferred and deprecated 
states. The Router Advertisement message specifies 
the period of time that an address can remain in this 
state. The valid lifetime must be greater than or 
equal to the preferred lifetime. 

The address is in the process of being verified as unique. Verification occurs 
through duplicate address detection. The Router Advertisement message 
specifies the period of time that an address can remain in this state. 

The address has been verified as unique. A node can send and receive 
unicast traffic to and from a preferred address. The Router Advertisement 
message specifies the period of time that an address can remain in this state. 

The address is still valid, but using it for new communication is discouraged. 
Existing communication sessions can continue to use a deprecated address. 
A node can send and receive unicast traffic to and from a deprecated address. 

The address can no longer send unicast traffic to or receive it from a node. 
An address enters this state after the valid lifetime expires 

Valid Lifetime 

Preferred Lifetime 

Preferred 

Valid  Time 

Valid  

Invalid  

Invalid  

Deprecated Preferred 

Deprecated 

Tentative 

Tentative 

Figure 7.14:  Address states.       

DHCP is not utilized in IPv6 to confi gure a link-local scope IP address: the link-local scope of an IPv6 
addresses is always confi gured automatically; addresses with other scopes, such as site-local and global, 
are confi gured by router advertisements. Specifi cally, link-local addresses are automatically confi gured for 
each interface on each IPv6 node (host or router) with a unique link-local IPv6 address (that is, the IPv6 
host confi gures a link-local address for each interface.)  To communicate with IPv6 nodes that are not on 
attached links, the host must have additional site-local or global unicast addresses. Additional addresses for 
hosts are obtained from router advertisements; additional addresses for routers must be assigned manually. 
To communicate with IPv6 nodes on other network segments, IPv6 uses a default router. A default router 
is automatically assigned based on the receipt of a router advertisement. Alternately, one can add a default 
route to the IPv6 routing table. Note that one does not need to confi gure a default router for a network that 
consists of a single network segment.

The following sequence identifi es the address autoconfi guration process for an IPv6 node, such as an IPv6-
based VoIP phone: 

A tentative link-local address is derived, based on the link-local prefi x of FE80::/64 and the 64-bit 
interface identifi er. 

•
•

•

•

•
•

•
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Duplicate address detection is performed to verify the uniqueness of the tentative link-local address. 
If duplicate address detection fails, one must manually confi gure the node. 

 —or— 

If duplicate address detection succeeds, the tentative address is assumed to be valid and unique. The link-lo-
cal address is initialized for the interface. The corresponding solicited-node multicast link-layer address is 
registered with the network adapter. 

For an IPv6 host, such as a SIP server, address autoconfi guration continues as follows: 

The host sends a Router Solicitation message. 
If a Router Advertisement message is received, the confi guration information that is included in the 
message is set on the host. 

For each stateless autoconfi guration address prefi x that is included, the following processes occurs: 

The address prefi x and the appropriate 64-bit interface identifi er are used to derive a tentative 
address. 

Duplicate address detection is used to verify the uniqueness of the tentative address. If the tentative address 
is in use, the address is not initialized for the interface. If the tentative address is not in use, the address 
is initialized. This includes setting the valid and preferred lifetimes based on information included in the 
Router Advertisement message. 

Other confi guration processes are shown in Table 7.6 [MSD200401].

Table 7.6: Confi gurations of interest.

Confi guration Description

Single Subnet with 
Link-Local Addresses

This confi guration supports the installation of the IPv6 protocol on at least two nodes on the same 
network segment without intermediate routers.

IPv6 Traffi c Between 
Nodes on Different 
Subnets of an IPv6 
Internetwork

This confi guration includes two separate network segments (also known as links or subnets), and 
an IPv6-capable router that connects the network segments and forwards IPv6 PDUs between the 
hosts.

IPv6 Traffi c Between 
Nodes on Different 
Subnets of an IPv4 
Internetwork

This confi guration supports IPv6 traffi c that is carried as the payload of an IPv4 PDU (treating the 
IPv4 infrastructure as an IPv6 link-layer) without the deployment of IPv6 routers. 

IPv6 Traffi c Between 
Nodes in Different 
Sites Across the 
Internet (6to4)

This confi guration supports the 6to4 tunneling technique. The IPv6 traffi c is encapsulated with an 
IPv4 header before it is sent over an IPv4 internetwork such as the Internet.

7.5  Routing and Route Management
Routing is the process of forwarding PDUs between connected network segments (also known as links or 
subnets). Routing is a primary function of a network layer protocol, whether it is IP version 4 or version 6. 
IPv6 routers provide the primary means for joining together two or more IPv6 network segments. Network 
segments are identifi ed by using an IPv6 network prefi x and prefi x length. Routers pass IPv6 PDUs from 
one network segment to another. IPv6 routers are attached to two or more IPv6 network segments and enable 
hosts on those segments to forward IPv6 PDUs between them. IPv6 PDUs are exchanged and processed on 
each host by using IPv6 at layer 3 (the Internet layer).

•
•

•
•

•
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Datagrams with a source and destination IP address identifi ed in the header are handed to the IP protocol en-
gine/layer. Above the IPv6 layer, transport services on the source host pass data in the form of TCP segments 
or UDP PDUs down to the IPv6 layer. The IPv6 layer creates IPv6 PDUs with source and destination ad-
dress information that is used to route the data through the network. The IPv6 layer then passes PDUs down 
to the link layer, where the PDUs are converted into frames for transmission over network-specifi c media on 
a physical network. This process occurs in reverse order on the destination host [MSD200401].

IPv6 layer services on each sending host (whether a data server, a multimedia server, or a VoIP server) ex-
amine the destination address of each PDU, compare this address to a locally maintained routing table, and 
then determine what additional forwarding is required. 

IPv6 hosts utilize routing tables to maintain information about other IPv6 networks and IPv6 hosts. The 
routing tables provide important information about how to communicate with remote networks and hosts. 
Every device that runs IPv6 determines how to forward PDUs based on the contents of the IPv6 routing 
table. The following list identifi es the information contained in the IPv6 routing table:

An address prefi x 
The interface over which PDUs that match the address prefi x are sent 
A forwarding or next-hop address 
A preference value used to select between multiple routes with the same prefi x 
The lifetime of the route 
The specifi cation of whether the route is published (advertised in a Routing Advertisement) 
The specifi cation of how the route is aged 
The route type 

The IPv6 routing table is built automatically, based on the current IPv6 confi guration of the router. When 
forwarding IPv6 PDUs, the router searches the routing table for an entry that is the most specifi c match to 
the destination IPv6 address. A route for the link-local prefi x (FE80::/64) is not displayed.

Typically, a default router is used by an end device because it is not practical to maintain a routing table for 
each communication device on an IPv6 network that lists communication information for every other device. 
The default route (a route with a prefi x of ::/0) is typically used to forward an IPv6 PDU to a default router 
on the local link. Because the router that corresponds to the default router contains information about the 
network prefi xes of the other IPv6 subnets within the larger IPv6 internetwork, it forwards the PDU to other 
routers until the PDU is eventually delivered to the destination.

The following steps occur during the routing process [MSD200401]: 

Before a communication device sends an IPv6 PDU, it inserts its source IPv6 address and the desti-
nation IPv6 address (for the recipient) into the IPv6 header. 
The device then examines the destination IPv6 address, compares it to a locally maintained IPv6 
routing table, and takes appropriate action. The device does one of the following: 
It passes the PDU to a protocol layer above IPv6 on the local host. 
It forwards the PDU through one of its attached network interfaces. 
It discards the PDU. 

IPv6 searches the routing table for the route that is the closest match to the destination IPv6 address. The 
most specifi c to the least specifi c route is determined in the following order: 

A route that matches the destination IPv6 address (a host route with a 128-bit prefi x length). 
A route that matches the destination with the longest prefi x length. 
The default route (the network prefi x ::/0). 

If a matching route is not found, the destination is determined to be an on-link destination. 

•
•
•
•
•
•
•
•

•

•

•
•
•
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3.
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7.6  Deployment Status

7.6.1 Deployment Approach
Initial1 network pilot deployments of IPv6 by institutions, research labs, and academia were somewhat open-
ended, testing the underlying protocol capabilities of IPv6. Of late, a focus is beginning to emerge from 
these pilots and trials on how to deploy IPv6. The current focus is network infrastructure deployment, driven 
by provider, enterprise, consumer, multimedia, and mobility requirements for next generation networks. 3G 
VoIP is one example of these next-generation mobility networks. Indeed, multimedia is the market driver, 
according to industry observers: users want to be mobile when using their multimedia. These requirements 
invariably lead to the need for new network infrastructure components within Provider, Enterprise, and 
Consumer Networks (PECN). The network pilots now underway will assist stakeholders to prepare for the 
network infrastructure deployment for PECN, and will help defi ne a set of deployment and transition models 
that can be used by industry and government. 

To support a successful IPv6 deployment the network infrastructure, the applications, the middleware, the 
security, and the management for the PECN environment and for affi liated end users must fi rst be deployed. 
The planning and operational analysis to deploy IPv6 pervasively within a network requires planning and 
testing. Some of this IPv6 planning and testing is still to be done, however, it is not required to have all of 
this completed in order to begin network infrastructure deployment. Current IPv6 deployments support this 
pragmatic view. 

IPv6 deployment also faces some technology and business challenges: the market benefi ts from IPv6 as-
sume an end-to-end model; unfortunately this is not the model of most networks today. Thus a technology 
transformation for the new model is required, in addition to a transition to IPv6. The business strategy to 
determine the costs and benefi ts of an approach to deploy IPv6 is an initiative that is now in progress.

The PECN environment has a common foundation: it requires the Service Provider (SP), in the view of 
stakeholders, to implement a successful deployment of IPv6. The enterprise and consumer deployments will 
require interoperation with a provider, and each of them can also be a provider to their environment. The 
SP provides prefi xes to an enterprise and the enterprise provides prefi xes to their Intranet, or the consumer 
to their home network devices. IPv6 address assignment is similar across the PECN. This is also true of the 
deployment models being tested within network pilots and prototype implementations. 

Network pilots are testing several deployment models: (1) IPv6 support within the Internet routing core, (2) 
IPv6 support at the provider and customer edge, and, (3) IPv6 support on the client networks. Then within 
this model, both sparse and wide-use views exist for IPv6 Intranet nodal and sub-networks deployment. The 
Internet or provider core is most diffi cult to test transition to IPv6. The Internet core initially will either tun-
nel PDUs across the core, encapsulating IPv6 within IPv4 or use the Multiprotocol Label Switching (MPLS) 
protocol to move IPv6 PDUs across the Internet core transparent to the IPv4 infrastructure. Network pilots 
exist that can test moving IPv6 PDUs over an Internet core and those network pilots are beginning to con-
nect with each other across multiple geographies, which is good for testing an Internet core paradigm.

The provider and customer edge of network pilots currently are testing native IPv6 and IPv6-in-IPv4 tun-
nel PDUs to the edge of an Internet core. If not native IPv6 to the Internet core, then various IPv6 transition 
mechanisms are being used to move IPv6 through an IPv4 infrastructure using a dual-stack method for IPv6 de-
ployment. What the dual-stack method states is that the network and nodes transitioning to IPv6 are capable of 
supporting both IPv4 and IPv6. This permits the PECN environments to be able to test and verify a deployment 
model that fi ts their business requirement to support a sparse or wide-use view for the IPv6 deployment model. 

1 This section is based in large measure on reference [BOU200501]. The author thanks the IPv6 Forum for this material.
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The provider edge can also use IPv6 with MPLS at the edge to move IPv6 PDUs across an Internet core sup-
porting MPLS, whether that core supports IPv6 or IPv4, and is being tested in several network pilots. The 
nodal and sub-networks implementations within an Intranet or PECN network pilot currently deploy assum-
ing a dual-stack environment for either sparse or wide-use views for the IPv6 deployment model. The sparse 
view of deployment is that only nodes or networks that require IPv6 will be upgraded to use IPv6 within the 
PECN environments. The wide use view of deployment is that IPv6 routing will be dominant (preferred over 
IPv4) on the Intranets backbone and the sub-networks.

7.6.2  Network Infrastructure Deployment
Current deployment is verifying the network infrastructure to support the installation of IPv6 networks 
within the PECN environments. Network infrastructure includes the hardware, software, and infrastructure 
applications for an IPv6 network to begin data communications and support the Internet Protocol Suite 
implementation on a network and across an Internet core network for end-to-end communications.

Deployment has products participating from IT vendors from multiple geographies, and has demonstrated 
the network infrastructure can provide IPv6 connectivity and interoperability across multiple implementa-
tions. The routing implementation for the IPv6 network infrastructure has been verifi ed. The core network 
infrastructure applications have been used and tested widely such as node-to-node communications for 
autoconfi guration, confi guration of network parameters for the network and nodes, fi le transfer, electronic 
messaging, web access and services. The Application Program Interfaces (APIs) for IPv6 have been verifi ed 
and tested so application providers can perform the necessary porting of those applications to support IPv6. 

Transition mechanisms have been implemented and also tested on currently deployed networks and have 
demonstrated the ability to support a matrix of combinations of IPv6 and IPv4 interoperation. Sparse and 
wide-use views have been implemented on several network pilots supporting native IPv6 peering networks 
such as Moonv6 and 6net. The deployment has verifi ed that PECN users will have a set of options for transi-
tion depending on their business and technology view to deploy IPv6 and no single transition mechanism 
will support all use cases required for transition.

The IPv6 network infrastructure deployment thus far supports the following assertions for PCEN 
environments: 

IPv6 capable dual-stack products exist on the market and can be purchased. 
IPv6 link or subnet communications between nodes can be supported today. 
IPv6 links and subnets can communicate over an Internet core network. 
IPv6 core applications infrastructure can be supported over an IPv6 network. 
IPv6 transition mechanisms exist to support the interoperation of IPv4 and IPv6 on a network. 

Current network pilots have begun to deploy mobility using IPv6 and have started to verify the advantages 
of IPv6 for Mobile Ad Hoc Networks, and Seamless Mobility. The IPv6 network infrastructure deployed 
above provides a base for wider IPv6 deployment to support the development of next generation networks 
within the PECN environments.

7.6.3 Applications,  Middleware and Management for IPv6 Deployment
The applications and middleware being used for current deployment are usually freeware software. These 
systems have permitted the testing of multimedia and web services. The results are that applications can run 
over an IPv6 network and can perform well. 

But, the production applications for streaming media, VoIP, web proxy caches, security applications infra-
structure (such as intrusion prevention, or public key infrastructure), database, manufacturing applications, 
and enterprise resource applications simply have not as of yet been ported to IPv6 as of mid-decade. This is 

•
•
•
•
•
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a signifi cant roadblock to the deployment of IPv6, and it is critical for 2006–2007 that applications be avail-
able for PECN environments to begin production deployment adoption at that time. 

Another functional requirement for IPv6 that has had limited testing with current deployment is the network 
management of IPv6 and management in the context of interoperation of IPv4 and IPv6. Network views 
for IPv6 using SNMP have been done for IPv6, but not integrated with IPv4 that will be a requirement for 
production deployment on most networks. The range of management software for IPv4 networks must be 
ported to support IPv6.

7.6.4  Security Deployment and Business Challenge for IPv6
As we saw in Chapter 5, today many users who access networks enter the network within a security model 
where authentication is based on a Firewall or the use of the   Authentication, Authorization, and Accounting 
(AAA) protocol suite implementation. Many users are behind NAT routers that perform translation of the IP 
header source addresses and keep the state of those addresses for communications with nodes and applica-
tions remote from their Intranet network. In addition network access for remote users is often accomplished 
with Virtual Private Network (VPN) tunnels, where the security is enforced at the edge of the network. 
Generally speaking, the security model of many users is based on a model where security is at the edge of 
the network as depicted in Figure 7.15.

VPN 

IP 

VPN 

NAT-Firewall-AAA 

Figure 7.15: Typical security model in IPv4.

Users often today connect to the network trusting a third party usually with  NAT on the edge of their net-
work. Approaches such as the IPsec for end-to-end and peer-to-peer applications with encryption cannot be 
achieved because the IP address is used as a key for secure communications or the IP address is required to 
be globally routable on an Internet network. The current model prohibits the end-to-end trust model between 
two nodes, users, or applications whether stationary on a network or mobile. In addition NAT, prevents many 
applications from operating in a peer-to-peer manner, once they must operate external from an Intranet and 
across an Internet network and prevents seamless mobility across Internet networks. IPv6 will restore the use 
of applications using both the models, but that technology evolution will have disruptive ramifi cations to the 
security model that the Internet currently assumes operationally, for deployment.

A new model emerging with IPv6 can support the current and a new end-to-end security model, but how that 
is architected, managed, deployed, and implemented operationally is a question to be discussed. One view is 
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presented in Figure 7.16. The updated model in Figure 7.16 permits the current model but removes NAT to sup-
port the evolution of peer-to-peer applications in addition to end-to-end security. The VPN is still available, but 
the Security Manager permits an end-to-end pass-through trust model for security protocols like IPsec. 

The current Firewall model becomes an security management domain for the network edge permitting 
multiple security models. The Security Manager also will support network Intrusion Detection (IDS), and if 
there is a breach on the network can shut down the end-to-end communications, and force all communica-
tions through the fi rewall perimeter as an Intranet operation for Internet communications. The security view 
now takes on a network wide view not a single point of entry view, which begins to support an ambient and 
a network centric view for network security.

VPN 

IP 

VPN 

IPsec end-to-endIPsec end-to-end

End-to-End Security Manager 
(Firewall, AAA, Mobility, etc.)

Figure 7.16:  End-to-end security model.

This end-to-end model can also support the emerging use of wireless networks with seamless mobility as 
depicted in Figure 7.17.

Mobile IPv6 Home Agent 
and AAA Server 

Provider IPv6 WLAN 
Regional or Local Mobility Manager 

Home Local Area 802.11i Network 
Regional or Local Area 802.11i  

Provider Network 

Remote Local Area 802.11i Network 

Correspondent Nodes and  
Services and AAA Client 

Figure 7.17: Benefi ts of the security manager.
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In Figure 7.17, the benefi ts of the Security Manager can be used with AAA methods to ensure secure access 
to wireless networks in addition to the encryption supported by   IEEE 802.11i, which supports the encryption 
of Layer 2 PDUs access to the wireless networks. The End-to-End (E2E) Security Manager with 802.11i 
will support seamless secure mobility in conjunction with the Mobile IPv6 extensions to the IPv6 architec-
ture for deployment. The emerging IEEE 802.11n work to provide higher throughput will further reinforce 
802.11i wireless access security and provide enhanced performance to this emerging security method.

The integral technology to move networks to an end-to-end and peer-to-peer secure model have been 
defi ned, but the deployment of this model will be an extremely disruptive technology in the market. The evo-
lution will have an impact to current network operational methods and business practices across an Internet 
network. An example of the technical challenges are that current fi rewalls, fi lters, and IDS assume knowl-
edge below the IP header within the transport data payload, which will not be available to implementations, 
when the payload is encrypted for example by IPsec or 802.11i entering the wireless network. Only the IP 
header will be exposed to the edge devices on an end-to-end supported network. From a business practice 
perspective today deployment and operational models for Internet networks are usually based on encryption 
from the edge network node view.

An end-to-end security model will be disruptive, but also provides a required new security model that is 
superior and more effi cient for peer-to-peer communications for networks that want to support an end-to-end 
trust model as an operational requirement. The end-to-end security model also has performance and man-
agement advantages operationally, once the infrastructure is created to support an ambient secure model for 
peer-to-peer applications, which will be driven by the evolution of a seamless mobile communications for 
applications, and the rise of a mobile society for businesses and people in general.

This new model can also be an economic stimulus for new business, early adopters, and suppliers who pro-
vide products and services for the transition to an end-to-end security model, and these early adopters will 
be the ones potentially who will gain the most profi t from this disruptive technology event.

In addition, IPv6 provides many benefi ts to next generation networks and mobility because of its ability to 
perform stateless node discovery and network operations. But, on a wireless network the nodes and network 
infrastructure supporting that stateless environment brings new security concerns that must be addressed for 
network operations. Current deployment has begun to test IPsec end-to-end, and the above security model is 
in its design stages in being prepared to be deployed in several network pilots. The security software infra-
structure for IPv4 must be ported to IPv6 for the pervasive deployment of IPv6 on production networks.

One approach to deal with the IPSec limitations cited above is to use the newly-proposed   Multilayer IP-
security (ML-IPsec). ML-IPsec uses a multilayer protection model to replace the single end-to-end model. 
Unlike IPsec where the scope of encryption and authentication apply to the entire IP datagram payload 
(sometimes IP header as well), ML-IPsec divides the IP datagram into zones. It applies different protection 
schemes to different zones. Each zone has its own sets of security associations, its own set of private keys 
(secrets) that are not shared with other zones, and its own sets of access control rules (defi ning which nodes 
in the network have access to the zone) [ZHA200401].

Multilayer IPsec applies separate encryption/authentication with different keys on different parts of an IP da-
tagram. It allows intermediate routers to have limited and controllable access to part of IP datagram (usually 
headers) but not the user data, for applications such as fl ow classifi cation, diffserv, transparent proxy, and so 
on (and those “intelligent routing” that need access to higher-layer protocol headers). The idea is to divide 
the IP datagram into several parts and apply different forms of protection to different parts. For example, the 
TCP payload part can be protected between two end points while the TCP/IP header part can be protected 
but accessible to two end points plus certain routers in the network. It allows TCP PEP to coexist with IPsec, 
and provides both performance improvement and security protection to wireless networks [ZHA200401].
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When ML-IPsec protects a traffi c stream from its source to its destination, it will fi rst rearrange the IP data-
gram into zones and apply cryptographic protections. When the ML-IPsec protected datagram fl ows through 
an authorized intermediate gateway, a certain part of the datagram may be decrypted and/or modifi ed and 
re-encrypted, but the other parts will not be compromised. When the PDU reaches its destination, ML-IP-
sec will be able to reconstruct the entire datagram. ML-IPsec defi nes a complex security relationship that 
involves both the sender and the receiver of a security service, but also selected intermediate nodes along the 
delivery path [ZHA200401].
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C H A P T E R  8
Issues Related to Transitioning to IPv6

While it is possible to deploy (some) IPv6 systems as stand-alone islands, this approach does not support the 
ubiquitous end-to-end carrier-class VoIP services we have advocated in this text. To achieve this end-to-end 
connectivity signifi cant portions of the IP infrastructure must be upgraded. This evolution starts with the 
introduction of interconnected mixed-technology networks. 

As IPv6 is introduced in the IPv4-based Internet, a plethora of  interworking issues will arise, including, 
but not limited to routing, addressing, and Domain Naming System (DNS). An important key to a success-
ful IPv6 transition is compatibility with the large installed base of IPv4 hosts and routers. Customers at all 
levels will expect seamless interworking. The interworking issues apply to all types of IP-based networks, 
including VoIP networks; in particular, there may be a need at some point in the medium-term future to 
interworking 2G VoIP systems with newer 3G VoIP systems.

Because IPv6 and IPv4 will need to coexist on the intranet and in the Internet for some time to come, 
network applications, devices, and VoIP elements (proxies, phones, gatekeepers, and so forth) need to be 
able to communicate transparently with both IPv4 and IPv6 nodes. It follows that there is a need for IPv4 
  compatibility mechanisms that can be implemented by IPv6 hosts and routers. Such mechanisms, as speci-
fi ed in RFC 2893, include providing complete implementations of both versions of the Internet Protocol 
(IPv4 and IPv6) (aka dual-stack deployment), and tunneling IPv6 packets over IPv4 routing infrastructures. 
These mechanisms are designed to allow IPv6 nodes to maintain complete compatibility with IPv4, which is 
expected to simplify the  deployment of IPv6 in the Internet, and facilitate the eventual transition of the entire 
Internet to IPv6. 

The discussion that follows herewith is based on RFC 2893 [GIL200001].

8.1 Introduction
The key to a successful IPv6 transition is compatibility with the large installed base of IPv4 hosts and rout-
ers. Maintaining compatibility with IPv4 while deploying IPv6 will streamline the task of transitioning the 
Internet to IPv6. IETF  RFC 2893 defi nes a set of mechanisms that IPv6 hosts and routers may implement in 
order to be compatible with  IPv4 hosts and routers. The mechanisms described in RFC 2893 are designed 
to be employed by  IPv6 hosts and routers that need to interoperate with IPv4 hosts and utilize IPv4 routing 
infrastructures. On can expect that most nodes in the Internet will need such compatibility for a long time to 
come, and perhaps even indefi nitely. (However, IPv6 may be used in some environments where interoper-
ability with IPv4 is not required; IPv6 nodes that are designed to be used in such environments need not use 
or even implement these mechanisms.)

 Interworking mechanisms include:

 Dual-IP layer (also known as dual-stack):  A technique for providing complete support for both 
Internet protocols—IPv4 and IPv6–in hosts and routers.

•
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 Confi gured tunneling of IPv6 over IPv4:  Point-to-point tunnels made by encapsulating IPv6 pack-
ets within IPv4 headers to carry them over IPv4 routing infrastructures.
 IPv4-compatible IPv6 addresses:  An IPv6 address format that employs embedded IPv4 addresses.
 Automatic tunneling of IPv6 over IPv4:  A mechanism for using IPv4-compatible addresses to auto-
matically tunnel IPv6 packets over IPv4 networks.

The mechanisms defi ned here are intended to be part of a “ transition toolbox”—a growing collection of 
techniques that implementations and users may employ to ease the transition. The tools may be used as 
needed. Implementations and sites decide which techniques are appropriate to their specifi c needs. RFC 
2893 defi nes the initial core set of transition mechanisms, but these are not expected to be the only tools 
available; additional transition and compatibility mechanisms are expected to be developed in the future, 
with new IETF RFCs and documentation being written to specify them.

8.1.1 Terminology
The following terms are used in this discussion:

Types of Nodes:
 IPv4-only node: A host or router that implements only IPv4. An IPv4-only node does not under-
stand IPv6. The installed base of IPv4 hosts and routers existing before the transition begins are 
IPv4-only nodes.
 IPv6/IPv4 node: A host or router that implements both IPv4 and IPv6.
 IPv6-only node: A host or router that implements IPv6, and does not implement IPv4. The opera-
tion of IPv6-only nodes is not addressed here.
 IPv6 node: Any host or router that implements IPv6. IPv6/IPv4 and IPv6-only nodes are both IPv6 
nodes.
 IPv4 node: Any host or router that implements IPv4. IPv6/IPv4 and IPv4-only nodes are both IPv4 
nodes.

Types of  IPv6 Addresses:
 IPv4-compatible IPv6 address: An IPv6 address bearing the high-order 96-bit prefi x 0:0:0:0:0:0, and an IPv4 
address in the low-order 32-bits. IPv4-compatible addresses are used by IPv6/IPv4 nodes which perform 
automatic tunneling,

 IPv6-native address: The remainder of the IPv6 address space. An IPv6 address that bears a prefi x other than 
0:0:0:0:0:0.

Techniques Used in the Transition:
 IPv6-over-IPv4 tunneling: The technique of encapsulating IPv6 packets within IPv4 so that they 
can be carried across IPv4 routing infrastructures.
 Confi gured tunneling:  IPv6-over-IPv4 tunneling where the IPv4 tunnel endpoint address is 
determined by confi guration information on the encapsulating node. The tunnels can be either uni-
directional or bidirectional. Bidirectional confi gured tunnels behave as virtual point-to-point links.
 Automatic tunneling: IPv6-over-IPv4 tunneling where the IPv4 tunnel endpoint address is deter-
mined from the IPv4 address embedded in the IPv4-compatible destination address of the IPv6 
packet being tunneled.
 IPv4 multicast tunneling: IPv6-over-IPv4 tunneling where the IPv4 tunnel endpoint address is 
determined using Neighbor Discovery. Unlike confi gured tunneling this does not require any ad-
dress confi guration and unlike automatic tunneling it does not require the use of IPv4-compatible 
addresses. However, the mechanism assumes that the IPv4 infrastructure supports IPv4 multicast. 

•

•
•
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Other  transition mechanisms include the following:

IPv6-only operation: An IPv6/IPv4 node with its IPv6 stack enabled and its IPv4 stack disabled.
IPv4-only operation: An IPv6/IPv4 node with its IPv4 stack enabled and its IPv6 stack disabled.
IPv6/IPv4 operation: An IPv6/IPv4 node with both stacks enabled.

8.1.2 Approach
The remainder of this section is organized as follows:

Section 8.2 discusses the operation of nodes with a dual-IP layer, IPv6/IPv4 nodes.
Section 8.3 discusses the common mechanisms used in both of the IPv6-over-IPv4 tunneling 
techniques.
Section 8.4 discusses confi gured tunneling.
Section 8.5 discusses automatic tunneling and the IPv4-compatible IPv6 address format.
Section 8.6 looks at application aspects of transition.

8.2  Dual-IP Layer Operation
The most straightforward way for IPv6 nodes to remain compatible with IPv4-only nodes is by providing 
a complete IPv4 implementation. IPv6 nodes that provide a complete IPv4 and IPv6 implementations are 
called   IPv6/IPv4 nodes. IPv6/IPv4 nodes have the ability to send and receive both IPv4 and IPv6 packets. 
They can directly interoperate with IPv4 nodes using IPv4 packets, and also directly interoperate with IPv6 
nodes using IPv6 packets.

Even though a node may be equipped to support both protocols, one or the other stack may be disabled for 
operational reasons. Thus IPv6/IPv4 nodes may be operated in one of three modes:

With their IPv4 stack enabled and their IPv6 stack disabled;
With their IPv6 stack enabled and their IPv4 stack disabled; or
With both stacks enabled.

IPv6/IPv4 nodes with their   IPv6 stack disabled will operate like IPv4-only nodes. Similarly, IPv6/IPv4 
nodes with their IPv4 stacks disabled will operate like IPv6-only nodes. IPv6/IPv4 nodes may provide a 
confi guration switch to disable either their IPv4 or IPv6 stack.

The dual-IP layer technique may or may not be used in conjunction with the IPv6-over-IPv4 tunneling 
techniques, which are described in Sections 8.3, 8.4 and 8.5. An IPv6/IPv4 node that supports tunneling may 
support only confi gured tunneling, or both confi gured and automatic tunneling. Thus three modes of tunnel-
ing support are possible:

IPv6/IPv4 node that does not perform tunneling;
IPv6/IPv4 node that performs confi gured tunneling only; and
IPv6/IPv4 node that performs confi gured tunneling and automatic tunneling.

8.2.1  Address Confi guration
Because they support both protocols, IPv6/IPv4 nodes may be confi gured with both IPv4 and IPv6 address-
es. IPv6/IPv4 nodes use IPv4 mechanisms (e.g., DHCP) to acquire their IPv4 addresses, and IPv6 protocol 
mechanisms (e.g., stateless address autoconfi guration) to acquire their IPv6-native addresses. Section 8.5.2 
describes a mechanism by which IPv6/IPv4 nodes that support automatic tunneling may use IPv4 protocol 
mechanisms to acquire their IPv4-compatible IPv6 address.

•
•
•
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8.2.2  Domain Naming System
The DNS is used in both IPv4 and IPv6 to map between hostnames and IP addresses. A new resource record 
type named “A6” has been defi ned for IPv6 addresses with support for an earlier record named “AAAA”. 
Since IPv6/IPv4 nodes must be able to interoperate directly with both IPv4 and IPv6 nodes, they must pro-
vide resolver libraries capable of dealing with IPv4 “A” records as well as IPv6 “A6” and “AAAA” records.

 DNS resolver libraries on IPv6/IPv4 nodes must be capable of handling both A6/AAAA and A records. 
However, when a query locates an A6/AAAA record holding an IPv6 address, and an A record holding an 
IPv4 address, the resolver library may fi lter or order the results returned to the application in order to infl u-
ence the version of IP packets used to communicate with that node. In terms of fi ltering, the resolver library 
has three alternatives:

Return only the IPv6 address to the application;
Return only the IPv4 address to the application; or
Return both addresses to the application.

If it returns only the IPv6 address, the application will communicate with the node using IPv6. If it returns 
only the IPv4 address, the application will communicate with the node using IPv4. If it returns both address-
es, the application will have the choice as to which address to use, and thus which IP protocol to employ.

If it returns both, the resolver may elect to order the addresses—IPv6 fi rst, or IPv4 fi rst. Since most ap-
plications try the addresses in the order they are returned by the resolver, this can affect the IP version 
“preference” of applications.

The decision to fi lter or order DNS results is implementation specifi c. IPv6/IPv4 nodes may provide policy 
confi guration to control fi ltering or ordering of addresses returned by the resolver, or leave the decision 
entirely up to the application.

An implementation must allow the application to control whether or not such fi ltering takes place.

8.2.3  Advertising Addresses in the DNS
There are some constraints placed on the use of the DNS during transition. Most of these are obvious but are 
stated here for completeness.

The recommendation is that A6/AAAA records for a node should not be added to the DNS until all of these 
are true:

The address is assigned to the interface on the node.
The address is confi gured on the interface.
The interface is on a link which is connected to the IPv6 infrastructure.

If an IPv6 node is isolated from an IPv6 perspective (e.g., it is not connected to the 6bone to take a concrete 
example) constraint #3 would mean that it should not have an address in the DNS.

This works great when other dual-stack nodes tries to contact the isolated dual-stack node. There is no IPv6 
address in the DNS thus the peer does not even try communicating using IPv6 but goes directly to IPv4 (we 
are assuming both nodes have A records in the DNS).

However, this does not work well when the isolated node is trying to establish communication. Even though 
it does not have an IPv6 address in the DNS it will fi nd A6/AAAA records in the DNS for the peer. Since the 
isolated node has IPv6 addresses assigned to at least one interface it will try to communicate using IPv6. If it 
has no IPv6 route to the 6bone (e.g., because the local router was upgraded to advertise IPv6 addresses using 
 Neighbor Discovery but that router does not have any IPv6 routes) this communication will fail. Typically 
this means a few minutes of delay as TCP times out. The TCP specifi cation says that ICMP unreachable 

1.
2.
3.

1.
2.
3.
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messages could be due to routing transients thus they should not immediately terminate the TCP connection. 
This means that the normal TCP timeout of a few minutes apply. Once TCP times out the application will 
hopefully try the IPv4 addresses based on the A records in the DNS, but this will be painfully slow.

A possible implication of the recommendations above is that, if one enables IPv6 on a node on a link 
without IPv6 infrastructure, and choose to add A6/AAAA records to the DNS for that node, then external 
IPv6 nodes that might see these A6/AAAA records will possibly try to reach that node using IPv6 and suffer 
delays or communication failure due to unreachability. (A delay is incurred if the application correctly falls 
back to using IPv4 if it cannot establish communication using IPv6 addresses. If this fallback is not done the 
application would fail to communicate in this case.)  Thus it is suggested that either the recommendations be 
followed, or care be taken to only do so with nodes that will not be impacted by external accessing delays 
and/or communication failure.

In the future when a site or node removes the support for IPv4 the above recommendations apply to when 
the A records for the node(s) should be removed from the DNS.

8.3  Common Tunneling Mechanisms
In most deployment scenarios, the IPv6 routing infrastructure will be built up over time. While the IPv6 
infrastructure is being deployed, the existing IPv4 routing infrastructure can remain functional, and can be 
used to carry IPv6 traffi c. Tunneling provides a way to utilize an existing IPv4 routing infrastructure to carry 
IPv6 traffi c.

IPv6/IPv4 hosts and routers can tunnel IPv6 datagrams over regions of IPv4 routing topology by encapsulat-
ing them within IPv4 packets. Tunneling can be used in a variety of ways:

 Router-to-Router. IPv6/IPv4 routers interconnected by an IPv4 infrastructure can tunnel IPv6 pack-
ets between themselves. In this case, the tunnel spans one segment of the end-to-end path that the 
IPv6 packet takes.
 Host-to-Router. IPv6/IPv4 hosts can tunnel IPv6 packets to an intermediary IPv6/IPv4 router that 
is reachable via an IPv4 infrastructure. This type of tunnel spans the fi rst segment of the packet’s 
end-to-end path.
 Host-to-Host. IPv6/IPv4 hosts that are interconnected by an IPv4 infrastructure can tunnel IPv6 
packets between themselves. In this case, the tunnel spans the entire end-to-end path that the packet 
takes.
 Router-to-Host. IPv6/IPv4 routers can tunnel IPv6 packets to their fi nal destination IPv6/IPv4 host. 
This tunnel spans only the last segment of the end-to-end path.

Tunneling techniques are usually classifi ed according to the mechanism by which the encapsulating node 
determines the address of the node at the end of the tunnel. In the fi rst two tunneling methods listed above—
router-to-router and host-to-router—the IPv6 packet is being tunneled to a router. The endpoint of this type 
of tunnel is an intermediary router which must decapsulate the IPv6 packet and forward it on to its fi nal des-
tination. When tunneling to a router, the endpoint of the tunnel is different from the destination of the packet 
being tunneled. So the addresses in the IPv6 packet being tunneled can not provide the IPv4 address of the 
tunnel endpoint. Instead, the tunnel endpoint address must be determined from confi guration information on 
the node performing the tunneling. We use the term “confi gured tunneling” to describe the type of tunneling 
where the endpoint is explicitly confi gured.

In the last two tunneling methods—host-to-host and router-to-host—the IPv6 packet is tunneled all the 
way to its fi nal destination. In this case, the destination address of both the IPv6 packet and the encap-
sulating IPv4 header identify the same node! This fact can be exploited by encoding information in the 

•

•

•

•
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IPv6  destination address that will allow the encapsulating node to determine tunnel endpoint IPv4 address 
automatically. Automatic tunneling employs this technique, using a special IPv6 address format with an em-
bedded IPv4 address to allow tunneling nodes to automatically derive the tunnel endpoint IPv4 address. This 
eliminates the need to explicitly confi gure the tunnel endpoint address, greatly simplifying confi guration.

The two tunneling techniques:  automatic and  confi gured, differ primarily in how they determine the tunnel 
endpoint address. Most of the underlying mechanisms are the same:

The entry node of the tunnel (the encapsulating node) creates an encapsulating IPv4 header and 
transmits the encapsulated packet.
The exit node of the tunnel (the decapsulating node) receives the encapsulated packet, reassembles 
the packet if needed, removes the IPv4 header, updates the IPv6 header, and processes the received 
IPv6 packet.
The encapsulating node may need to maintain soft state information for each tunnel recording such 
parameters as the MTU of the tunnel in order to process IPv6 packets forwarded into the tunnel. 
Since the number of tunnels that any one host or router may be using may grow to be quite large, 
this state information can be cached and discarded when not in use.

The remainder of this section discusses the common mechanisms that apply to both types of tunneling. 
Subsequent sections discuss how the tunnel endpoint address is determined for automatic and confi gured 
tunneling.

8.3.1 Encapsulation
The encapsulation of an IPv6 datagram in IPv4 is shown in Figure 8.1.

IPv6 
Header 

IPv4 
Header 

IPv6 
Header 

Transport 
Layer Header 

Transport 
Layer Header 

Data Data 

Figure 8.1:  Encapsulating IPv6 in IPv4.

In addition to adding an IPv4 header, the encapsulating node also has to handle some more complex issues:

Determine when to fragment and when to report an ICMP “packet too big” error back to the source.
How to refl ect  IPv4 ICMP errors from routers along the tunnel path back to the source as IPv6 
ICMP errors.

Those issues are discussed in the following sections.

8.3.2  Tunnel MTU and  Fragmentation
The encapsulating node could view encapsulation as IPv6 using IPv4 as a link layer with a very large MTU 
(65535-20 bytes to be exact; 20 bytes “extra” are needed for the encapsulating IPv4 header). The encapsulat-
ing node would need only to report IPv6 ICMP “packet too big” errors back to the source for packets that 
exceed this MTU. However, such a scheme would be ineffi cient for two reasons:

•

•

•

•
•
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It would result in more fragmentation than needed. IPv4 layer fragmentation should be avoided due 
to the performance problems caused by the loss unit being smaller than the retransmission unit.
Any IPv4 fragmentation occurring inside the tunnel would have to be reassembled at the tunnel 
endpoint. For tunnels that terminate at a router, this would require additional memory to reassemble 
the IPv4 fragments into a complete IPv6 packet before that packet could be forwarded onward.

The fragmentation inside the tunnel can be reduced to a minimum by having the encapsulating node track 
the IPv4 Path MTU across the tunnel, using the IPv4 Path MTU Discovery Protocol and recording the 
resulting path MTU. The IPv6 layer in the encapsulating node can then view a tunnel as a link layer with an 
MTU equal to the IPv4 path MTU, minus the size of the encapsulating IPv4 header.

Note that this does not completely eliminate  IPv4 fragmentation in the case when the IPv4 path MTU would 
result in an IPv6 MTU less than 1,280 bytes. (Any link layer used by IPv6 has to have an MTU of at least 
1,280 bytes.) In this case, the IPv6 layer has to “see” a link layer with an MTU of 1,280 bytes and the encap-
sulating node has to use IPv4 fragmentation in order to forward the 1,280 byte IPv6 packets.

The encapsulating node can employ the following algorithm to determine when to forward an IPv6 packet 
that is larger than the tunnel’s path MTU using IPv4 fragmentation, and when to return an IPv6 ICMP 
“packet too big” message:

 if (IPv4 path MTU - 20) is less than or equal to 1280

  if packet is larger than 1280 bytes

   Send IPv6 ICMP “packet too big” with MTU = 1280.

   Drop packet.

  else

   Encapsulate but do not set the Don’t Fragment

   fl ag in the IPv4 header. The resulting IPv4

   packet might be fragmented by the IPv4 layer on

   the encapsulating node or by some router along

   the IPv4 path.

  endif

   else

             if packet is larger than (IPv4 path MTU - 20)

              Send IPv6 ICMP “packet too big” with

           MTU = (IPv4 path MTU - 20).

           Drop packet.

             else

                    Encapsulate and set the Don’t Fragment fl ag

                    in the IPv4 header.

                endif

        endif

1.

2.
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Encapsulating nodes that have a large number of tunnels might not be able to store the IPv4 Path MTU for 
all tunnels. Such nodes can, at the expense of additional fragmentation in the network, avoid using the IPv4 
Path MTU algorithm across the tunnel and instead use the MTU of the link layer (under IPv4) in the above 
algorithm instead of the IPv4 path MTU. In this case the Don’t Fragment bit must not be set in the encapsu-
lating IPv4 header.

8.3.3  Hop Limit
IPv6-over-IPv4 tunnels are modeled as “single-hop.” That is, the IPv6 hop limit is decremented by 1 when 
an IPv6 packet traverses the tunnel. The single-hop model serves to hide the existence of a tunnel. The tun-
nel is opaque to users of the network, and is not detectable by network diagnostic tools such as traceroute.

The single-hop model is implemented by having the encapsulating and decapsulating nodes process the IPv6 
hop limit fi eld as they would if they were forwarding a packet on to any other datalink. That is, they decre-
ment the hop limit by 1 when forwarding an IPv6 packet. (The originating node and fi nal destination do not 
decrement the hop limit.)

The TTL of the encapsulating IPv4 header is selected in an implementation dependent manner. The current 
suggested value is published in the “Assigned Numbers RFC. Implementations may provide a mechanism to 
allow the administrator to confi gure the IPv4 TTL such as the one specifi ed in the IP Tunnel MIB.

8.3.4 Handling  IPv4 ICMP errors
In response to encapsulated packets it has sent into the tunnel, the encapsulating node might receive IPv4 
ICMP error messages from IPv4 routers inside the tunnel. These packets are addressed to the encapsulating 
node because it is the IPv4 source of the encapsulated packet.

The ICMP “ packet too big” error messages are handled according to IPv4 Path MTU Discovery and the 
resulting path MTU is recorded in the IPv4 layer. The recorded path MTU is used by IPv6 to determine if an 
IPv6 ICMP “packet too big” error has to be generated as described in section 8.3.2. The handling of other 
types of ICMP error messages depends on how much information is included in the “packet in error” fi eld, 
which holds the encapsulated packet that caused the error.

Many older IPv4 routers return only 8 bytes of data beyond the IPv4 header of the packet in error, which is 
not enough to include the address fi elds of the IPv6 header. More modern IPv4 routers are likely to return 
enough data beyond the IPv4 header to include the entire IPv6 header and possibly even the data beyond 
that.

If the offending packet includes enough data, the encapsulating node may extract the encapsulated IPv6 
packet and use it to generate an  IPv6 ICMP message directed back to the originating IPv6 node, as shown in 
Figure 8.2.
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Figure 8.2: IPv4 ICMP error message returned to encapsulating node.

8.3.5  IPv4 Header Construction
When encapsulating an IPv6 packet in an IPv4 datagram, the IPv4 header fi elds are set as follows:

Version: 4
IP Header Length in 32-bit words: 5 (There are no IPv4 options in the encapsulating header.)
Type of Service: 0. (Note that work underway in the IETF is redefi ning the Type of Service byte 
and as a result future RFCs might defi ne a different behavior for the ToS byte when tunneling.)
Total Length: Payload length from IPv6 header plus length of IPv6 and IPv4 headers (i.e., a 
constant 60 bytes).
Identifi cation: Generated uniquely as for any IPv4 packet transmitted by the system.
Flags:

  Set the Don’t Fragment (DF) fl ag as specifi ed in Section 3.2.
          Set the More Fragments (MF) bit as necessary if fragmenting.

 Fragment Offset:

Set as necessary if fragmenting.

 Time to Live:

 Set in implementation-specifi c manner.

Protocol:

41 (Assigned payload type number for IPv6).

 Header Checksum:

Calculate the checksum of the IPv4 header.

Source Address:

IPv4 address of outgoing interface of the encapsulating node.

Destination Address:

IPv4 address of tunnel endpoint.

Any IPv6 options are preserved in the packet (after the IPv6 header).

•
•
•

•

•
•

•

•

•

•
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•
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8.3.6  Decapsulation
When an IPv6/IPv4 host or a router receives an IPv4 datagram that is addressed to one of its own IPv4 
address, and the value of the protocol fi eld is 41, it reassembles if the packet if it is fragmented at the IPv4 
level, then it removes the IPv4 header and submits the IPv6 datagram to its IPv6 layer code. The decapsulat-
ing node must be capable of reassembling an IPv4 packet that is 1300 bytes (1280 bytes plus IPv4 header). 
The decapsulation is shown in Figure 8.3.

IPv6 
Header 

IPv4 
Header 

IPv6 
Header 

Transport 
Layer Header 

Transport 
Layer Header 

Data Data 

Figure 8.3: Decapsulating IPv6 from IPv4.

When decapsulating the packet, the IPv6 header is not modifi ed. [Note that work underway in the IETF is 
redefi ning the Type of Service byte and as a result future RFCs might defi ne a different behavior for the ToS 
byte when decapsulating a tunneled packet.]  If the packet is subsequently forwarded, its hop limit is decre-
mented by one. As part of the decapsulation the node should silently discard a packet with an invalid IPv4 
source address such as a multicast address, a broadcast address, 0.0.0.0, and 127.0.0.1. In general it should 
apply the rules for martian fi ltering in described in RFC 1812 and ingress fi ltering described in RFC 2267 on 
the IPv4 source address.

The encapsulating IPv4 header is discarded.

After the decapsulation the node should silently discard a packet with an invalid IPv6 source address. This 
includes IPv6 multicast addresses, the unspecifi ed address, and the loopback address but also IPv4-com-
patible IPv6 source addresses where the IPv4 part of the address is an (IPv4) multicast address, broadcast 
address, 0.0.0.0, or 127.0.0.1. In general it should apply the rules for martian fi ltering described in RFC 
1812 and ingress fi ltering described in RFC 2267 on the IPv4-compatible source address. The decapsulating 
node performs IPv4 reassembly before decapsulating the IPv6 packet. All IPv6 options are preserved even if 
the encapsulating IPv4 packet is fragmented.

After the IPv6 packet is decapsulated, it is processed almost the same as any received IPv6 packet. The 
only difference being that a decapsulated packet must not be forwarded unless the node has been explicitly 
confi gured to forward such packets for the given IPv4 source address. This confi guration can be implicit in 
e.g., having a confi gured tunnel which matches the IPv4 source address. This restriction is needed to prevent 
tunneling to be used as a tool to circumvent ingress fi ltering described in RFC 2267.

8.3.7  Link-Local Addresses
Both the confi gured and automatic tunnels are IPv6 interfaces (over the IPv4 “link layer”) thus must have 
link-local addresses. The link-local addresses are used by routing protocols operating over the tunnels.

The Interface Identifi er described in RFC 2373 (now updated by RFC 3513) for such an Interface should 
be the 32-bit IPv4 address of that interface, with the bytes in the same order in which they would appear in 
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the header of an IPv4 packet, padded at the left with zeros to a total of 64 bits. Note that the “Universal/Lo-
cal” bit is zero, indicating that the Interface Identifi er is not globally unique. When the host has more than 
one IPv4 address in use on the physical interface concerned, an administrative choice of one of these IPv4 
addresses is made.

The IPv6 Link-local address for an IPv4 virtual interface is formed by appending the Interface Identifi er, as 
defi ned above, to the prefi x FE80::/64.

   +-------+-------+-------+-------+-------+-------+------+------+
   |  FE      80      00      00      00      00      00     00  |
   +-------+-------+-------+-------+-------+-------+------+------+
   |  00      00   |  00   |  00   |   IPv4 Address              |
   +-------+-------+-------+-------+-------+-------+------+------+

8.3.8  Neighbor Discovery over Tunnels
Automatic tunnels and unidirectional confi gured tunnels are considered to be unidirectional. Thus the only 
aspects of Neighbor Discovery and Stateless Address Autoconfi guration that apply to these tunnels is the 
formation of the link-local address.

If an implementation provides bidirectional confi gured tunnels it must at least accept and respond to the 
probe packets used by Neighbor Unreachability Detection. Such implementations should also send NUD 
probe packets to detect when the confi gured tunnel fails at which point the implementation can use an alter-
nate path to reach the destination. Note that Neighbor Discovery allows that the sending of NUD probes be 
omitted for router to router links if the routing protocol tracks bidirectional reachability.

For the purposes of Neighbor Discovery the automatic and confi gured tunnels specifi ed in this RFC as as-
sumed to not have a link- layer address, even though the link-layer (IPv4) does have address. This means 
that a sender of Neighbor Discovery packets:

should not include Source Link Layer Address (SLLA) options or Target Link Layer Address 
(TLLA) options on the tunnel link.
must silently ignore any received SLLA or TLLA options on the tunnel link.

8.4  Confi gured Tunneling
In confi gured tunneling, the tunnel endpoint address is determined from confi guration information in the 
encapsulating node. For each tunnel, the encapsulating node must store the tunnel endpoint address. When 
an IPv6 packet is transmitted over a tunnel, the tunnel endpoint address confi gured for that tunnel is used as 
the destination address for the encapsulating IPv4 header.

The determination of which packets to tunnel is usually made by routing information on the encapsulating 
node. This is usually done via a routing table, which directs packets based on their destination address using 
the prefi x mask and match technique.

8.4.1  Default Confi gured Tunnel
IPv6/IPv4 hosts that are connected to datalinks with no IPv6 routers may use a confi gured tunnel to reach 
an IPv6 router. This tunnel allows the host to communicate with the rest of the IPv6 Internet (i.e., nodes 
with IPv6-native addresses). If the IPv4 address of an IPv6/IPv4 router bordering the IPv6 backbone is 
known, this can be used as the tunnel endpoint address. This tunnel can be confi gured into the routing table 
as an IPv6 “default route.” That is, all IPv6 destination addresses will match the route and could potentially 

•

•
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traverse the tunnel. Since the “mask length” of such a default route is zero, it will be used only if there are 
no other routes with a longer mask that match the destination. The default confi gured tunnel can be used in 
conjunction with automatic tunneling, as described in Section 8.5.4.

8.4.2  Default Confi gured Tunnel Using IPv4 “Anycast Address”
The tunnel endpoint address of such a default tunnel could be the IPv4 address of one IPv6/IPv4 router at 
the border of the IPv6 backbone. Alternatively, the tunnel endpoint could be an IPv4 “anycast address.” With 
this approach, multiple IPv6/IPv4 routers at the border advertise IPv4 reachability to the same IPv4 address. 
All of these routers accept packets to this address as their own, and will decapsulate IPv6 packets tunneled 
to this address. When an IPv6/IPv4 node sends an encapsulated packet to this address, it will be delivered to 
only one of the border routers, but the sending node will not know which one. The IPv4 routing system will 
generally carry the traffi c to the closest router.

Using a default tunnel to an IPv4 “anycast address” provides a high degree of robustness since multiple 
border router can be provided, and, using the normal fallback mechanisms of IPv4 routing, traffi c will au-
tomatically switch to another router when one goes down. However, care must be taking when using such a 
default tunnel to prevent different IPv4 fragments from arriving at different routers for reassembly. This can 
be prevented by either avoiding fragmentation of the encapsulated packets (by ensuring an IPv4 MTU of at 
least 1,300 bytes) or by preventing frequent changes to IPv4 routing.

8.4.3  Ingress Filtering
The decapsulating node must verify that the tunnel source address is acceptable before forwarding decap-
sulated packets to avoid circumventing ingress fi ltering. Note that packets which are delivered to transport 
protocols on the decapsulating node should not be subject to these checks. For bidirectional confi gured 
tunnels this is done by verifying that the source address is the IPv4 address of the other end of the tunnel. 
For unidirectional confi gured tunnels the decapsulating node must be confi gured with a list of source IPv4 
address prefi xes that are acceptable. Such a list must default to not having any entries i.e., the node has to be 
explicitly confi gured to forward decapsulated packets received over unidirectional confi gured tunnels.

8.5  Automatic Tunneling
In automatic tunneling, the tunnel endpoint address is determined by the IPv4-compatible destination ad-
dress of the IPv6 packet being tunneled. Automatic tunneling allows IPv6/IPv4 nodes to communicate over 
IPv4 routing infrastructures without pre-confi guring tunnels.

8.5.1  IPv4-Compatible Address Format
IPv6/IPv4 nodes that perform automatic tunneling are assigned IPv4- compatible address. An IPv4-compat-
ible address is identifi ed by an all-zeros 96-bit prefi x, and holds an IPv4 address in the low-order 32-bits. 
IPv4-compatible addresses are structured as shown in Figure 8.4.

96-bits 

IPv4 Address 0 : 0 : 0 : 0 : 0 : 0 

32-bits 

Figure 8.4: IPv4-compatible IPv6 address format.
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IPv4-compatible addresses are assigned exclusively to nodes that support automatic tunneling. A node 
should be confi gured with an IPv4-compatible address only if it is prepared to accept IPv6 packets destined 
to that address encapsulated in IPv4 packets destined to the embedded IPv4 address.

An IPv4-compatible address is globally unique as long as the IPv4 address is not from the private IPv4 
address space. An implementation should behave as if its IPv4-compatible address(es) are assigned to the 
node’s automatic tunneling interface, even if the implementation does not implement automatic tunneling 
using a concept of interfaces. Thus, the IPv4-compatible address should not be viewed as being attached to, 
for example, an Ethernet interface, that is, implications should not use the   Neighbor Discovery mechanisms 
such as NUD (RFC 2461) at the Ethernet. Any such interactions should be done using the encapsulated 
packets i.e., over the automatic tunneling (conceptual) interface.

8.5.2  IPv4-Compatible Address Confi guration
An IPv6/IPv4 node with an IPv4-compatible address uses that address as one of its IPv6 addresses, while the 
IPv4 address embedded in the low-order 32-bits serves as the IPv4 address for one of its interfaces.

An IPv6/IPv4 node may acquire its IPv4-compatible IPv6 addresses via IPv4 address confi guration proto-
cols. It may use any IPv4 address confi guration mechanism to acquire its IPv4 address, then “map” that address 
into an IPv4-compatible IPv6 address by pre-pending it with the 96-bit prefi x 0:0:0:0:0:0. This mode of con-
fi guration allows IPv6/IPv4 nodes to “leverage” the installed base of IPv4 address confi guration servers.

The specifi c algorithm for acquiring an IPv4-compatible address using IPv4-based address confi guration 
protocols is as follows:

The IPv6/IPv4 node uses standard IPv4 mechanisms or protocols to acquire the IPv4 address for one of 
its interfaces. These include:

The   Dynamic Host Confi guration Protocol (DHCP)
The   Bootstrap Protocol (BOOTP)
The   Reverse Address Resolution Protocol (RARP)
Manual confi guration
Any other mechanism which accurately yields the node’s own IPv4 address

The node uses this address as the IPv4 address for this interface.
The node prepends the 96-bit prefi x 0:0:0:0:0:0 to the 32-bit IPv4 address that it acquired in step (1). 
The result is an IPv4-compatible IPv6 address with one of the node’s IPv4-addresses embedded in the 
low-order 32-bits. The node uses this address as one of its IPv6 addresses.

8.5.3  Automatic Tunneling Operation
In automatic tunneling, the tunnel endpoint address is determined from the packet being tunneled. If the 
destination IPv6 address is IPv4-compatible, then the packet can be sent via automatic tunneling. If the des-
tination is IPv6-native, the packet cannot be sent via automatic tunneling.

A routing table entry can be used to direct automatic tunneling. An implementation can have a special static 
routing table entry for the prefi x 0:0:0:0:0:0/96. (That is, a route to the all-zeros prefi x with a 96-bit mask.)  
Packets that match this prefi x are sent to a pseudo-interface driver which performs automatic tunneling. 
Since all IPv4-compatible IPv6 addresses will match this prefi x, all packets to those destinations will be 
auto-tunneled.

Once it is delivered to the automatic tunneling module, the IPv6 packet is encapsulated within an IPv4 
header according to the rules described in Section 8.3. The source and destination addresses of the encapsu-
lating IPv4 header are assigned as follows:

1.

•
•
•
•
•

2.
3.
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 Destination IPv4 address:

  Low-order 32-bits of IPv6 destination address

 Source IPv4 address:

  IPv4 address of interface the packet is sent via

The automatic tunneling module always sends packets in this encapsulated form, even if the destination is on 
an attached datalink.

The automatic tunneling module must not send to IPv4 broadcast or multicast destinations. It must drop all 
IPv6 packets destined to IPv4-compatible destinations when the embedded IPv4 address is broadcast, multi-
cast, the unspecifi ed (0.0.0.0) address, or the loopback address (127.0.0.1). Note that the sender can only tell 
if an address is a network or subnet broadcast for broadcast addresses assigned to directly attached links.

8.5.4 Use With  Default Confi gured Tunnels
Automatic tunneling is often used in conjunction with the default confi gured tunnel technique. “ Isolated” 
IPv6/IPv4 hosts—those with no on-link IPv6 routers—are confi gured to use automatic tunneling and IPv4-
compatible IPv6 addresses, and have at least one default confi gured tunnel to an IPv6 router. That IPv6 
router is confi gured to perform automatic tunneling as well. These isolated hosts send packets to IPv4-
compatible destinations via automatic tunneling and packets for IPv6-native destinations via the default 
confi gured tunnel. IPv4-compatible destinations will match the 96- bit all-zeros prefi x route discussed in the 
previous section, while IPv6-native destinations will match the default route via the confi gured tunnel. Reply 
packets from IPv6-native destinations are routed back to an IPv6/IPv4 router which delivers them to the 
original host via automatic tunneling.

8.5.5  Source Address Selection
When an IPv6/IPv4 node originates an IPv6 packet, it must select the source IPv6 address to use. IPv6/IPv4 
nodes that are confi gured to perform automatic tunneling may be confi gured with global IPv6-native ad-
dresses as well as IPv4-compatible addresses. The selection of which source address to use will determine 
what form the return traffi c is sent via. If the IPv4-compatible address is used, the return traffi c will have 
to be delivered via automatic tunneling, but if the IPv6-native address is used, the return traffi c will not be 
automatic-tunneled. In order to make traffi c as symmetric as possible, the following source address selection 
preference is recommended:

Destination is IPv4-compatible: Use IPv4-compatible source address associated with IPv4 address 
of outgoing interface.
Destination is IPv6-native: Use IPv6-native address of outgoing interface.

If an IPv6/IPv4 node does not have a global IPv6-native address, but is originating a packet to an IPv6-na-
tive destination, it may use its IPv4-compatible address as its source address.

8.5.6  Ingress Filtering
The decapsulating node must verify that the encapsulated packets are acceptable before forwarding decap-
sulated packets to avoid circumventing ingress fi ltering. Note that packets which are delivered to transport 
protocols on the decapsulating node should not be subject to these checks. Since automatic tunnels always 
encapsulate to the destination (i.e., the IPv4 destination will be the destination) any packet received over an 
automatic tunnel should not be forwarded.

•

•
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8.6  Application Aspects of IPv6 Transition

8.6.1 Transition Issues
The transition mechanisms discussed previously do not consider whether the applications support IPv6. Two 
interrelated topics in this arena need consideration:

1.  How different network transition techniques affect applications, and strategies for applications to sup-
port IPv6 and IPv4, and,

2.  How to develop IPv6-capable or protocol-independent applications (“application porting guidelines”) 
using standard APIs (e.g., RFC 3493, RFC 3542).

Applications will have to be modifi ed to support IPv6 (and IPv4) by using one of a number of techniques 
described herewith. In what follows is a quick summary of some of the issues, approaches, and techniques 
discussed in IETF RFC 4038 [SHI200501], on which this section is based.

8.6.2 Overview of IPv6 Application Transition
The transition of an application can be classifi ed by using four different cases (excluding the fi rst case when 
there is no IPv6 support in either the application or the operating system) as seen in Figure 8.5.

TCP / UDP / Others 

appv4 (appv4 − IPv4-only applications)

(Transport protocols − TCP, UDP, SCTP, DCCP, etc.)

(IP protocols supported/enabled in the OS)IPv4          IPv6 

Case 1.  IPv4 applications in a dual-stack node.

TCP / UDP / Others 

appv4        appv6 (appv4 − IPv4-only applications)
(appv6 − IPv6-only applications)
(Transport protocols − TCP, UDP, SCTP, DCCP, etc.)

(IP protocols supported/enabled in the OS)IPv4          IPv6 

Case 2.  IPv4 only applications and IPv6-only applications in a dual-stack node.

TCP / UDP / Others 

appv4/v6 (appv4/v6 − Applications supporting both IPv4 and IPv6)

(Transport protocols − TCP, UDP, SCTP, DCCP, etc.)

(IP protocols supported/enabled in the OS)IPv4          IPv6 

Case 3.  Applications supporting both IPv4 and IPv6 in a dual-stack node.

TCP / UDP / Others 

appv4/v6 (appv4/v6 − Applications supporting both IPv4 and IPv6)

(Transport protocols − TCP, UDP, SCTP, DCCP, etc.)

(IP protocols supported/enabled in the OS)IPv4 

Case 4.  Applications supporting both IPv4 and IPv6 in an IPv4-only node.

Figure 8.5: Overview of application transition.
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Case 1:  IPv4-only  applications in a dual-stack node. IPv6 protocol is introduced in a node, but applications 
are not yet ported to support IPv6.

Case 2:   IPv4-only applications and IPv6-only applications in a dual-stack node. Applications are ported for 
IPv6-only. Therefore there are two similar applications, one for each protocol version (e.g., ping and 
ping6).

Case 3:   Applications supporting both IPv4 and IPv6 in a dual-stack node. Applications are ported for both 
IPv4 and IPv6 support. Therefore, the existing IPv4 applications can be removed.

Case 4:   Applications supporting both IPv4 and IPv6 in an IPv4-only node. Applications are ported for both 
IPv4 and IPv6 support, but the same applications may also have to work when IPv6 is not being used 
(e.g., disabled from the OS).

The fi rst two cases are not interesting in the longer term; only few applications are inherently IPv4- or IPv6-
specifi c, and should work with both protocols without having to care about which one is being used.

8.6.3 Problems with IPv6 Application Transition
There are several reasons why the transition period between IPv4 and IPv6 applications may not be straight-
forward. These issues are described in this section.

8.6.3.1 IPv6 Support in the OS and Applications Are Unrelated
Considering the cases described in the previous section, IPv4 and IPv6 protocol stacks are likely to co-ex-
ist in a node for a long time. Similarly, most applications are expected to be able to handle both IPv4 and 
IPv6 during another long period. A dual-stack operating system is not intended to have both IPv4 and IPv6 
applications. Therefore, IPv6-capable application transition may be independent of protocol stacks in a 
node. Applications capable of both IPv4 and IPv6 will probably have to work properly in IPv4-only nodes 
(whether the IPv6 protocol is completely disabled or there is no IPv6 connectivity at all).

8.6.3.2 DNS Does Not Indicate Which IP Version Is Used
In a node, the DNS name resolver gathers the list of destination addresses.  DNS queries and responses are 
sent by using either IPv4 or IPv6 to carry the queries, regardless of the protocol version of the data records. 
The DNS name resolution issue related to application transition is that by only doing a DNS name lookup 
a client application can not be certain of the version of the peer application. For example, if a server appli-
cation does not support IPv6 yet but runs on a dual-stack machine for other IPv6 services, and this host is 
listed with an AAAA record in the DNS, the client application will fail to connect to the server application. 
This is caused by a mismatch between the DNS query result (i.e., IPv6 addresses) and a server application 
version (i.e., IPv4).

Using SRV records would avoid these problems. Unfortunately, they are not used widely enough to be ap-
plicable in most cases. Hence an operational solution is to use “service names” in the DNS. If a node offers 
multiple services, but only some of them over IPv6, a DNS name may be added for each of these services or 
group of services (with the associated A/AAAA records), not just a single name for the physical machine, 
also including the AAAA records. However, the applications cannot depend on this operational practice.

The application should request all IP addresses without address family constraints and try all the records 
returned from the DNS, in some order, until a working address is found. In particular, the application has to 
be able to handle all IP versions returned from the DNS.

Minoli_Book.indb   338Minoli_Book.indb   338 3/9/2006   6:31:14 PM3/9/2006   6:31:14 PM



Issues Related to Transitioning to IPv6

339

8.6.3.3 Supporting Many Versions of an Application is Diffi cult
During the application transition period, system administrators may have various versions of the same ap-
plication (an IPv4-only application, an IPv6-only application, or an application supporting both IPv4 and 
IPv6). Typically one cannot know which IP versions must be supported prior to doing a DNS lookup *and* 
trying (see section 8.6.3.2) the addresses returned. Therefore if  multiple versions of the same application are 
available, the local users have diffi culty selecting the right version supporting the exact IP version required. 
To avoid problems with one application not supporting the specifi ed protocol version, it is desirable to have 
hybrid applications supporting both.

An alternative approach for local client applications could be to have a “wrapper application” that performs 
certain tasks (such as fi guring out which protocol version will be used) and calls the IPv4/IPv6-only applica-
tions as necessary. This application would perform connection establishment (or similar tasks) and pass the 
opened socket to another application. However, as applications such as this would have to do more than just 
perform a DNS lookup or determine the literal IP address given, they will become complex -- likely much 
more so than a hybrid application. Furthermore, writing “wrapping” applications that perform complex 
operations with IP addresses (such as FTP clients) might be even more challenging or even impossible. In 
short, wrapper applications do not look like a robust approach for application transition.

8.6.4 Description of Transition Scenarios and Guidelines
Once the IPv6 network is deployed, applications supporting IPv6 can use IPv6 network services to establish 
IPv6 connections. However, upgrading every node to IPv6 at the same time is not feasible, and transition 
from IPv4 to IPv6 will be a gradual process. Dual-stack nodes provide one solution to maintaining IPv4 
compatibility in unicast communications. In this section we will analyze different application transition sce-
narios (as introduced in section 8.6.2) and guidelines for maintaining interoperability between applications 
running in different types of nodes.

Note that the fi rst two cases, IPv4-only and IPv6-only applications, are not interesting in the longer term; 
only few applications are inherently IPv4- or IPv6-specifi c, and should work with both protocols without 
having to care about which one is being used.

8.6.4.1  IPv4 Applications in a Dual-Stack Node
In this scenario, the IPv6 protocol is added in a node, but IPv6- capable applications are not yet available 
or installed. Although the node implements the dual-stack, IPv4 applications can only manage IPv4 com-
munications and accept/establish connections from/to nodes that implement an IPv4 stack. To allow an 
application to communicate with other nodes using IPv6, the fi rst priority is to port applications to IPv6.

In some cases (e.g., when no source code is available), existing IPv4 applications can work if the Bump-
in-the-Stack (BIS) or Bump-in-the- API (BIA) mechanism is installed in the node (BIS is defi ned in RFC 
2767, BIA is defi ned in RFC 3338). It is strongly recommended that application developers not use these 
mechanisms when application source code is available. Also, they should not be used as an excuse not to 
port software or to delay porting.

8.6.4.2  IPv6 Applications in a Dual-Stack Node
As it was seen in the previous section, applications should be ported to IPv6. The easiest way to port an IPv4 
application is to substitute the old IPv4 API references with the new IPv6 APIs with one-to-one mapping. 
This way the application will be IPv6-only. This IPv6-only source code cannot work in IPv4-only nodes, so 
the old IPv4 application should be maintained in these nodes. This necessitates having two similar applica-
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tions working with different protocol versions, depending on the node they are running (for example, telnet 
and telnet6). This case is undesirable, as maintaining two versions of the same source code per application 
could be diffi cult. This approach would also cause problems for users having to select which version of the 
application to use, as described in section 8.6.3.3.

Most implementations of dual-stack allow IPv6-only applications to interoperate with both IPv4 and IPv6 
nodes. IPv4 packets going to IPv6 applications on a dual-stack node reach their destination because their 
addresses are mapped by using IPv4-mapped IPv6 addresses: the IPv6 address ::FFFF:x.y.z.w represents the 
IPv4 address x.y.z.w (see Figure 8.6.)

TCP / UDP / Others (SCTP, DCCP, etc.) 

IPv6-only Applications 

IPv4 IPv6 

IPv4-mapped 
IPv6 Addresses 

IPv6  
Addresses 

IPv4  
Addresses 

IPv4  
Packets 

IPv6  
Packets 

Figure 8.6:  Address mapping.

One can analyze the behavior of IPv6-applications that exchange IPv4 packets with IPv4 applications by 
using the client/server model. We consider the default case to be when the IPV6_V6ONLY socket option has 
not been set. In these dual-stack nodes, this default behavior allows a limited amount of IPv4 communica-
tion using the IPv4-mapped IPv6 addresses.

 IPv6-only server: When an IPv4 client application sends data to an IPv6-only server application running on 
a dual-stack node by using the wildcard address, the IPv4 client address is interpreted as the IPv4-mapped 
IPv6 address in the dual-stack node. This allows the IPv6 application to manage the communication. The 
IPv6 server will use this mapped address as if it were a regular IPv6 address, and a usual IPv6 connection. 
However, IPv4 packets will be exchanged between the nodes. Kernels with dual-stack properly interpret 
IPv4-mapped IPv6 addresses as IPv4 ones, and vice versa.

 IPv6-only client: IPv6-only client applications in a dual-stack node will not receive IPv4-mapped addresses 
from the hostname resolution API functions unless a special hint, AI_V4MAPPED, is given. If it is, the IPv6 
client will use the returned mapped address as if it were a regular IPv6 address, and a usual IPv6 connection. 
However, IPv4 packets will be exchanged between applications.

Respectively, with IPV6_V6ONLY set, an IPv6-only server application will only communicate with IPv6 
nodes, and an IPv6-only client only with IPv6 servers, as the mapped addresses have been disabled. This op-
tion could be useful if applications use new IPv6 features such as Flow Label. If communication with IPv4 
is needed, either IPV6_V6ONLY must not be used, or dual-stack applications must be used, as described in 
section 8.6.4.3.
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Some implementations of dual-stack do not allow IPv4-mapped IPv6 addresses to be used for interoperabil-
ity between IPv4 and IPv6 applications. In these cases, there are two ways to handle the problem:

 1. Deploy two different versions of the application (possibly attached with ‘6’ in the name).

 2. Deploy just one application supporting both protocol versions as described in the next section.

The fi rst method is not recommended because of a signifi cant number of problems associated with selecting 
the right applications. These problems are described in sections 8.6.3.2 and 8.6.3.3. Therefore, there are two 
distinct cases to consider when writing one application to support both protocols:

Whether the application can (or should) support both IPv4 and IPv6 through IPv4-mapped IPv6 addresses or 
the applications should support both explicitly, and,

Whether the systems in which the applications are used support IPv6.

8.6.4.3  IPv4/IPv6 Applications in a Dual-Stack Node
Applications should be ported to support both IPv4 and IPv6. Over time, the existing IPv4-only applica-
tions could be removed. As we have only one version of each application, the source code will typically be 
easy to maintain and to modify, and there are no problems managing which application to select for which 
communication. This transition case is the most advisable. During the IPv6 transition period, applications 
supporting both IPv4 and IPv6 should be able to communicate with other applications, irrespective of the 
version of the protocol stack or the application in the node. Dual-applications allow more interoperability 
between heterogeneous applications and nodes.

If the source code is written in a protocol-independent way, without dependencies on either IPv4 or IPv6, 
applications will be able to communicate with any combination of applications and types of nodes.

Implementations typically prefer IPv6 by default if the remote node and application support it. However, 
if IPv6 connections fail, version-independent applications will automatically try IPv4 ones. The resolver 
returns a list of valid addresses for the remote node, and applications can iterate through all of them until 
connection succeeds.

Application writers should be aware of this protocol ordering, which is typically the default, but the applica-
tions themselves usually need not be (RFC 3484).

If the source code is written in a protocol-dependent way, the application will support IPv4 and IPv6 explic-
itly by using two separate sockets. Note that there are some differences in bind() implementation - that is,  in 
whether one can fi rst bind to IPv6 wildcard addresses, and then to those for IPv4. Writing applications that 
cope with this can be a pain. Implementing IPV6_V6ONLY simplifi es this. The IPv4 wildcard bind fails on 
some systems because the IPv4 address space is embedded into IPv6 address space when IPv4-mapped IPv6 
addresses are used.

8.6.4.4  IPv4/IPv6 Applications in an IPv4-Only Node
As the transition is likely to take place over a longer time frame, applications already ported to support 
both IPv4 and IPv6 may be run on IPv4-only nodes. This would typically be done to avoid supporting two 
application versions for older and newer operating systems, or to support a case in which the user wants to 
disable IPv6 for some reason.

The most important case is the application support on systems where IPv6 support can be dynamically 
enabled or disabled by the users. Applications on such a system should be able to handle a situation IPv6 
would not be enabled. Another scenario is when an application is deployed on older systems that do not sup-
port IPv6 at all (even the basic APIs such as getaddrinfo). In this case, the application designer has to make 
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a case-by-case judgment call as to whether it makes sense to have compile-time toggle between an older and 
a newer API (having to support both in the code), or whether to provide getaddrinfo and so on function sup-
port on older platforms as part of the application libraries.

8.6.5  Application Porting Considerations
The minimum changes for IPv4 applications to work with IPv6 are based on the different size and format 
of IPv4 and IPv6 addresses. Applications have been developed with IPv4 network protocol in mind. This 
assumption has resulted in many IP dependencies through source code. The following list summarizes the 
more common IP version dependencies in applications:

Presentation format for an IP address:  An ASCII string that represents the IP address, a dotted-
decimal string for IPv4, and a hexadecimal string for IPv6.
Transport layer API: Functions to establish communications and to exchange information.
Name and address resolution: Conversion functions between hostnames and IP addresses.
Specifi c IP dependencies: More specifi c IP version dependencies, such as IP address selection, ap-
plication framing, and storage of IP addresses.
Multicast applications:  One must fi nd the IPv6 equivalents to the IPv4 multicast addresses and use 
the right socket confi guration options.

Refer to RFC 4038 for more details on these issues.

 

1.

2.
3.
4.

5.
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